

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-II Examination, 2020

MATHEMATICS

PAPER-VIII (New Syllabus)

Time Allotted: 1 Hour

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. All symbols are of usual significance.

GROUP-A

- 1. Answer the following questions:
 - (a) Find the equation of the circle cutting orthogonally the set of three circles $x^2 + y^2 2x + 3y 7 = 0$, $x^2 + y^2 + 5x 5y + 9 = 0$ and $x^2 + y^2 + 7x 9y + 29 = 0$.
 - (b) Find the point where the straight line joining the points (2, -3, 1) and (3, -4, -5) cuts the plane 3x+y+z=8.
 - (c) A plane passes through a fixed point (p, q, r) and cuts the axes in A, B, C. Show that the locus of the centre of the sphere OABC is $\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2$.
- 2. Answer any *one* of the following questions: 3×1 = 3
 (a) Prove that the locus of a line which meets the lines y=mx, z=c and y=-mx, 3
 z=-c and which intersects the hyperbola xy=c², z=0 is (cmx-yz) (mxz-cy)+m(c²-z²)²=0.
 - (b) If the edges of a rectangular parallelepiped be *a*, *b*, *c* then show that the angles 3 between the four diagonals are given by $\cos^{-1}\left(\frac{a^2 \pm b^2 \pm c^2}{a^2 + b^2 + c^2}\right)$.
 - (c) If the straight line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ represents one of a set of three mutually 3 perpendicular generators of the cone 5yz 8zx 3xy = 0, then find the equation of other two.
- 3. Answer any *one* of the following questions: $5 \times 1 = 5$
 - (a) Show that the feet of the normals from the point (α, β, γ) to the paraboloid $x^2 + y^2 = 2az$ lie on the sphere $x^2 + y^2 + z^2 z(\alpha + \gamma) \frac{y}{2\beta}(\alpha^2 + \beta^2) = 0$, where $\beta \neq 0$.

5

Full Marks: 25

2+1+2=5

B.Sc./Part-II/Hons./(1+1+1) System/MTMH-VIII/2020

(b) Show that the equation to the plane containing the straight line $\frac{x}{a} - \frac{z}{c} = 1$, y = 0 is

$$\frac{x}{a} - \frac{y}{b} - \frac{z}{c} + 1 = 0$$
 and if 2*d* be the shortest distance between the lines, then show that
$$\frac{1}{d^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$$

(c) Find the equation of the cylinder whose generators touch the sphere 5 $x^2 + y^2 + z^2 = 4$ and are perpendicular to the plane x + y - 2z = 8.

GROUP-B

- 4. Answer the following questions:
 - (a) Find the differential equation of all spheres of radius *a*, having centre in the *xy*-plane.
 - (b) Eliminate the functions f and F from y = f(x-at) + F(x+at).

Answer any one of the following questions:

(c) Find $L^{-1}\left\{\frac{4}{p(p-2)}\right\}$.

5.

(a) Solve the differential equation $\frac{d^2y}{dx^2} + x^2 \frac{dy}{dx} - 4xy = 0$ in series near $x = 0$.	2
(b) Find the eigenvalues and eigenfunction for the differential equation	2
$\frac{d}{dx}\left(x\frac{dy}{dx}\right) + \frac{\lambda}{x}y = 0, \ (\lambda > 0),$	
satisfying the boundary conditions $y(1)=0$ and $y(e^{\pi})=0$.	
(c) Solve, by using Laplace transform, the equations	2
(D-2)x+3y=0,	
2x + (D-1)y = 0, t > 0	
and $D \equiv \frac{d}{dt}$ given that $x(0) = 8$ and $y(0) = 3$.	
6. Answer any <i>one</i> of the following questions:	$5 \times 1 = 5$
(a) Find the equation of an integral surface given by the differential equation.	5
2y(z-3)p + (2x-z)q = y(2x-3),	
which passes through the circle $z=0$, $x^2 + y^2 = 2x$.	
(b) Solve $(D^2 - 2D)y = e^x \cos x$ by the method of variation of parameter.	5
(c) Solve using Laplace transform:	5
${tD^2 + (1-2t)D - 2}y = 0, D \equiv \frac{d}{dt}$ given $y(0) = 1$ and $y'(0) = 2$.	

X

2+2+1=5

 $2 \times 1 = 2$

5