

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2021

GE1-P1-MATHEMATICS

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains GE1, GE2, GE3, GE4 and GE5. Candidates are required to answer any *one* from the *five* courses and they should mention it clearly on the Answer Book.

GE1

CALCULUS, GEOMETRY AND DIFFERENTIAL EQUATION

GROUP-A

1.		Answer any <i>four</i> questions from the following:	3×4 = 12
	(a)	Find the points of inflexion on the curve $(\theta^2 - 1)r = a\theta^2$.	3
	(b)	Find the envelopes of the lines $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are parameters related	3
		by $a+b=c$.	
	(c)	Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9$, $x + y - 2z = 4$ and the origin.	3
	(d)	Evaluate $\int_{0}^{1} xe^{-\sqrt{x}} dx$ using reduction formula.	3
	(e)	Obtain the singular solution of the equation $(xp - y)^2 = p^2 - 1$, where $p = dy/dx$.	3
		Determine the nature of the quadric $5x^2 - 6xy + 5y^2 + 22x - 26y + 29 = 0$.	3
		GROUP-B	
2.		GROUP-B Answer any <i>four</i> questions from the following:	6×4 = 24
2.	(a)		6×4 = 24 6
2.		Answer any <i>four</i> questions from the following:	
2.	(b)	Answer any <i>four</i> questions from the following: If $y = \frac{\sin^{-1} x}{\sqrt{1-x}}$, $ x < 1$, then prove that $(1-x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0$.	6
2.	(b)	Answer any <i>four</i> questions from the following: If $y = \frac{\sin^{-1} x}{\sqrt{1-x}}$, $ x < 1$, then prove that $(1-x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0$. Find the asymptotes of the curve $x^3 + 2x^2y - 4xy^2 + 8y^3 - 4x + 8y - 10 = 0$.	6 6
2.	(b) (c)	Answer any <i>four</i> questions from the following: If $y = \frac{\sin^{-1} x}{\sqrt{1-x}}$, $ x < 1$, then prove that $(1-x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0$. Find the asymptotes of the curve $x^3 + 2x^2y - 4xy^2 + 8y^3 - 4x + 8y - 10 = 0$. Find the area of the region lying between the cissoid $y^2 = \frac{x^3}{2a-x}$ and its	6 6
2.	(b) (c) (d)	Answer any <i>four</i> questions from the following: If $y = \frac{\sin^{-1} x}{\sqrt{1-x}}$, $ x < 1$, then prove that $(1-x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0$. Find the asymptotes of the curve $x^3 + 2x^2y - 4xy^2 + 8y^3 - 4x + 8y - 10 = 0$. Find the area of the region lying between the cissoid $y^2 = \frac{x^3}{2a-x}$ and its asymptote.	6 6 6

1

GROUP-C

Answer any two questions from the following	12×2 =24
3. (a) Find the range of values of x for which $y = x^4 - 6x^3 + 12x^2 + 5x + 7$ is concave upward or downward.	6
(b) Find the length of the arc of the cardioid $r = a(1 - \cos\theta)$ lying inside the circle $r = a \cos\theta$.	6
4. (a) Solve by using Bernoulli form $\frac{dy}{dx} + \frac{y}{x}\log y = \frac{y}{x^2}(\log y)^2$.	7
(b) Solve: $(xy^2 - e^{1/x^3}) dx - x^2 y dy = 0$	5
5. (a) Reduce the equation $7x^2 - 2xy + 7y^2 - 16x + 16y - 8 = 0$ to its canonical form and hence determine the nature of the conic.	8
(b) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$, 2x + 3y + 4z = 8 is a great circle.	4
6. (a) Find the value of $y_n(0)$, where $y = \log(x + \sqrt{1 + x^2})$.	6
(b) If $I_{m,n} = \int_{0}^{\pi/2} \cos^m x \sin nx dx$, then show that $I_{m,n} = \frac{1}{m+n} + \frac{m}{m+n} I_{m-1, n-1}$.	6
GE2	
ALGEBRA	
GROUP-A	

1. Answer any <i>four</i> questions from the following:	3×4 = 12
(a) Apply Descarte's rule of signs to find the nature of the roots of the equation $x^4 + mx^2 + nx - p = 0$, where <i>m</i> , <i>n</i> , <i>p</i> are positive.	3
(b) Prove that $\sqrt{i} + \sqrt{-i} = \sqrt{2}$.	3
(c) Prove that the eigenvalues of a real skew symmetric matrix are purely imaginary or zero.	3
(d) Find the sum of 99 th power of the roots of the equation $x^7 - 1 = 0$.	3
(e) Use Cayley-Hamilton theorem to find A^{-1} for the matrix	3
$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{bmatrix}$	
(f) Find the quadratic equation whose roots are twice the roots of $2x^2 - 5x + 2 = 0$.	3
GROUP-B	

2.	Answer any <i>four</i> questions from the following:	6×4 = 24
	(a) If $2\cos\theta = x + \frac{1}{x}$ and θ is real, prove that $2\cos n\theta = x^n + \frac{1}{x^n}$, <i>n</i> being an integer.	6

. ,	Solve the equation $16x^4 - 64x^3 + 56x^2 + 16x - 15 = 0$ w progression.	vhos	e ro	ots	are in arithmetic	6
	Find integers <i>u</i> and <i>v</i> satisfying $52u - 91v = 78$.					6
(d)]	Find all eigenvalues and eigenvectors of the matrix $A =$	$\begin{bmatrix} 2\\4 \end{bmatrix}$	0 3	1 1].	6
	For what values of λ the following system of equations	L		-	_	6
	x - y + z = 1 $x + 2y + 4z = \lambda$ $x + 4y + 6z = \lambda^{2}$					

(f) Use Cayley-Hamilton theorem to find A^{100} , where $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. 6

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

- 3. (a) If log sin(θ+iφ) = α + iβ, then prove that 2e^{2α} = cosh 2φ cos 2θ.
 (b) Find the relation among the coefficients of the equation 6 a₀x⁴ + 4a₁x³ + 6a₂x² + 4a₃x + a₄ = 0, so that the second term and the fourth term may be removed by the transformation x = y + h.
- 4. (a) If α , β , γ are the roots of the equation $x^3 + qx + r = 0$, find the equation whose foots are $\beta + \gamma 2\alpha$, $\gamma + \alpha 2\beta$, $\alpha + \beta 2\gamma$.

(b) Determine all values of $(1 + i\sqrt{3})^{3/4}$ and show that their product is 8. 4+2

- 5. (a) Solve the equation $3x^3 + 5x^2 + 5x + 3 = 0$, which has three distinct roots of equal moduli. 6
 - (b) If roots of $ax^3 + bx^2 + cx + d = 0$ are in arithmetic progression. Show that $2b^3 9abc + 27a^2d = 0$.

6. (a) Determine the conditions for which the system of equation has 2+2+2

- (i) only one solution
- (ii) no solution
- (iii) infinitely many solution.

$$x + 2y + z = 1$$

$$2x + y + 3z = b$$

$$x + ay + 3z = b + 1$$

(b) The matrix of a linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ with ordered basis 6 $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 is given by

$$\begin{pmatrix} 0 & 3 & 0 \\ 2 & 3 & -2 \\ 2 & -1 & 2 \end{pmatrix}$$

Find the matrix of T relative to the ordered basis $\{(2, 1, 1), (1, 2, 1), (1, 1, 2)\}$ of \mathbb{R}^3 .

GE3

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

 $3 \times 4 = 12$

 $6 \times 4 = 24$

6

- 1. Answer any *four* questions from the following:
 - (a) Show that the function $f(x, y) = xy^2$ does not satisfy the Lipschitz condition on the strip $|x| \le 1$, $|y| < \infty$.
 - (b) Find the Wronskian of $\{1, 1+x, 1+x+x^2+x^3\}$.
 - (c) Define Lipschitz constant. Find Lipschitz constant for the function $f(x, y) = x^2 y^2$ defined on $|x| \le 1$, $|y| \le 1$.

(d) Solve:
$$\frac{d^3y}{dx^5} - 2\frac{d^4y}{dx^4} + \frac{d^3y}{dx^3} = 0$$

(e) Examine whether the vector valued function $\vec{r} = t^3 \hat{i} + e^t \hat{j} + \frac{1}{t+3} \hat{k}$ is continuous at t = -3 or not.

(f) Evaluate:
$$\lim_{t \to 1} \left[\frac{t^3 - 1}{t - 1} \hat{i} + \frac{t^2 - 3t + 2}{t^2 + t - 2} \hat{j} + (t^2 + 1)e^{t - 1}\hat{k} \right]$$

GROUP-B

- (a) (i) If y_1 and y_2 are two independent solutions of the linear equation 3+3 $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0$, then show that the Wronskian $W(y_1, y_2) = Ae^{-\int p dx}$, where A is a constant.
 - (ii) Show that the functions $\{e^{2x}, e^{2x} \cos 4x, e^{2x} \sin 4x\}$ are linearly independent.
- (b) Show that linearly independent solutions of y'' 2y' + 2y = 0 are $e^x \sin x$ and $e^x \cos x$. What is the general solution? Find the solution y(x) with the conditions y(0) = 2, y'(0) = -3.

(c) Solve:
$$x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10(x + x^{-1})$$
 6

(d) Solve:
$$(D^3 - 1)y = x \sin x$$
, $D \equiv \frac{d}{dx}$

- (e) (i) Find the co-ordinates of the point where the line $\vec{r} = t\hat{i} + (1+2t)\hat{j} 3t\hat{k}$ 3+3 intersects the plane 3x y z = 2.
 - (ii) Show that the graph of $\vec{r}(t) = t\hat{i} + \frac{1+t}{t}\hat{j} + \frac{1-t^2}{t}\hat{k}$, t > 0 lies on the plane x y + z + 1 = 0.

(f) (i) Find the domain of the vector function h(t) F(t), where $h(t) = \sin t$ and 3+3 $F(t) = \frac{1}{\cos t}\hat{i} + \frac{1}{\sin t}\hat{j} + \frac{1}{\tan t}\hat{k}.$

(ii) Find
$$(F \times G)(t)$$
 if $F(t) = t^2 \hat{i} + t \hat{j} - (\sin t) \hat{k}$ and $G(t) = t^2 \hat{i} + \frac{1}{t} \hat{j} + 5 \hat{k}$.

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

3. (a) (i) Solve by the method of variation of parameters
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \log x$$
. 5+3+4

(ii) Evaluate:
$$\frac{1}{D^2 - 3D + 2} x e^{3x}$$

(iii) Solve: $\frac{d^2 y}{dx^2} + 16y = 1$, $y(0) = 1$, $y'(0) = 2$

(b) (i) Solve by using the method of undetermined coefficient
$$(D^2 + D - 6)y = 10e^{2x} - 18e^{3x} - 6x - 11$$
 6+6

(ii) Solve:
$$(D^4 + 2D^3 - 3D^2)y = x^2 + 3e^{2x} + 4\sin x$$

$$\left|\frac{dx}{dt} = -wy\right|$$
$$\left|\frac{dy}{dt} = wx\right|$$

and show that the point (x, y) lies on a circle.

(ii) Solve the system of equations

$$\frac{dx}{dt} = -x + 6y$$

$$\frac{dy}{dt} = x - 2y$$

in R^2 for the vector equation $4 + 1 + 4 + 3$

(d) (i) Find the slope of the line in R^2 for the vector equation $\vec{r}(t) = (1-2t)\hat{i} - (2-5t)\hat{j}$

- (ii) Define continuity of a vector valued function.
- (iii) Show that the vector function $\vec{r}(t) = \begin{cases} \frac{\sin t}{t} \hat{i} + t\hat{j} + t^2\hat{k} & , t \neq 0 \\ \hat{i} & , t = 0 \end{cases}$
 - is continuous at t = 0.
- (iv) Find a vector function F whose graph is the curve of intersection of the hemisphere $z = \sqrt{4 x^2 y^2}$ and the curve $y = x^2$.

GE4

GROUP THEORY

GROUP-A

1.		Answer any <i>four</i> questions from the following:	3×4= 12
	(a)	Let (S, \circ) be a semigroup. If for all $x, y \in S$, $x^2 \circ y = y = y \circ x^2$, prove that (S, \circ)	3
	(h)	is an abelian group. Suppose H, K are subgroups of index 2 in a group G . Prove that $H \cap K$ is a normal	3
	(0)	subgroup of G .	5
	(c)	Let $G = \langle a \rangle$ be a cyclic group of order <i>n</i> . Prove that every subgroup of G is of the	3
		form $\langle a^m \rangle$, where <i>m</i> is a divisor of <i>n</i> .	
	(d)	Find all elements of order 10 in the group $(\mathbb{Z}_{30}, +)$.	3

6+6

(e) Show that there does not exist an onto homomorphism from the group $(\mathbb{Z}_6, +)$ t	o 3
$(\mathbb{Z}_{4}, +).$	
(f) Prove or disprove: $(\mathbb{Q}, +)$ is isomorphic to (\mathbb{Q}^+, \cdot)	3

(f) Prove or disprove: $(\mathbb{Q}, +)$ is isomorphic to (\mathbb{Q}, \cdot)

GROUP-B

2.		Ansv	wer any <i>four</i> questions from the following:	6×4 = 24
	(a)		S be the set of all permutations on the set $\{1, 2, 3\}$. Show that S forms a non- ian group with respect to multiplication.	6
	(b)		pose that the order of an element a in a group (G, \circ) is n . Show that	4+2
		O(a	m) = $\frac{n}{d}$, where $d = \gcd(m, n)$. Find the order of $\overline{n-1}$ in $(\mathbb{Z}_{n}, +)$.	
	(c)	(i)	Let H be a subgroup of a group G and $a, b \in G$. Prove that $b \in Ha$ iff	2+4
			$ba^{-1} \in H$.	
		(ii)	Let H be a subgroup of a group G . Show that the set of all distinct left cosets of H in G and the set of all distinct right cosets of H in G have the same cardinality.	
	(d)	(i)	If H is a subgroup of G and N is a normal subgroup of G, then show that $H \cap N$ is a normal subgroup of H.	4+2
		(ii)	Prove that N is a normal subgroup of G iff $gNg^{-1} = N$ for every $g \in G$.	
	(e)	(i)	Let (G, \circ) be a group and H, K be subgroups of (G, \circ) . Show that HK forms a subgroup of (G, \circ) iff $HK = KH$.	4+2
		(ii)	Check whether the union of two subgroups of a group (G, \circ) is a subgroup of (G, \circ) or not?	
	(f)	(i)	Let (G, \circ) be a group and a mapping $\varphi: G \to G$ is defined by	4+2
			$\varphi(x) = x^2$, $x \in G$. Prove that φ is a homomorphism iff G is commutative.	
		(ii)	Prove that $(\mathbb{Z}_4, +)$ and "Klein's 4-group" are not isomorphic.	
			GROUP-C	
				10.0.04

Answer any two questions from the following $12 \times 2 = 24$

4

3. (a) (i) Let
$$G = S_3$$
, $G' = (\{-1, 1\}, \cdot)$ and $\varphi: G \to G'$ is defined by $4+2+2$

$$\alpha$$
 be an even permutation in S_3

 $\varphi(\alpha) = \begin{cases} -1 \end{cases}$, α be an odd permutation in S_3

(I) Show that φ is homomorphism. Then,

- (II) Find ker φ .
- (III) Deduce that A_3 is a normal subgroup of S_3 .
- (ii) Prove that a finite cyclic group of order *n* is isomorphic to $(\mathbb{Z}_n, +)$.
- (b) (i) Let H be a normal subgroup of G. Prove that the quotient group G/H is 4 + 4 + 4abelian iff $xyx^{-1}y^{-1} \in H$ for all $x, y \in G$.
 - (ii) Suppose that a subgroup H of a group G has the property that $x^2 \in H$ for every $x \in G$. Prove that H is normal in G and G/H is abelian.

(iii) Let
$$G = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R} \text{ and } ad \neq 0 \right\}$$
 and $H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \right\}$. Show that *H* is a normal subgroup of *G*.

that H is a normal subgroup of G.

- (c) Let *M* be the set of all real matrices $\begin{cases} a & a \\ b & b \end{cases}$: $a + b \neq 0 \end{cases}$. Prove that
 - (i) (M, \circ) is a semi-group under matrix multiplication.
 - (ii) there is no left identity in the semi-group.
 - (iii) $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ is a right identity.
- (d) (i) Let (G, \circ) , (G', *) be two groups and $\varphi: (G, \circ) \to (G', *)$ be an onto 6+6 homomorphism. Then prove that $G/\ker \varphi \simeq G'$.
 - (ii) Let G be a cyclic group of order 10 and G' be a cyclic group of order 5. Show that there exists a homomorphism φ of G onto G' with $o(\ker \varphi) = 2$.

GE5

NUMERICAL METHODS

GROUP-A

Answer any *four* questions from the following: 3×4 = 12
 (a) If f(x) = 4 cos x - 6x, find the relative percentage error in f(x) for x = 0, if the 3 error in x = 0.005.

(b) Deduce the iterative procedure $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})$ for evaluating \sqrt{a} using Newton-3

Raphson method.

(c) Prove that
$$\left(\frac{\Delta^2}{E}\right)x^3 = 6xh^2$$
 where the notations used have their usual meanings. 3

- (d) Show that $\nabla y_{n+1} = h \left[1 + \frac{1}{2}\nabla + \frac{5}{12}\nabla^2 + \dots \right] Dy_n$, where *D* is the differential 3 operator.
- (e) Write down the convergence of bisection method.
- (f) What is the geometrical significance of Simpson's one-third rule?

GROUP-B

2.	Answer any <i>four</i> questions from the following:	$6 \times 4 = 24$
	(a) If a number is connected to n significant figures and the first significant figure of	f 6
	the number is k, then prove that the relative error $\varepsilon_r < \frac{1}{k \cdot 10^{n-1}}$.	
	(b) Find the positive root of the equation $x^3 + x - 1 = 0$ by fixed point iteration method	6

- (b) Find the positive root of the equation $x^3 + x 1 = 0$ by fixed point iteration method 6 correct upto three decimal places.
- (c) Find a real root of the equation $x^{x} + 2x 2 = 0$ correct upto five decimal places 6 using bisection method.
- (d) Define backward difference operator ∇ and shifting operator *E*. Show that

$$\sum_{k=0}^{n-1} \Delta^2 f_k = \Delta f_n - \Delta f_0$$

3

3

6

4 + 4 + 4

- (e) Use Runge-Kutta method of order two to find y(0.1) and y(0.2) correct upto four 6 decimal places given $\frac{dy}{dx} = y - x$, y(0) = 2.
- (f) Explain Gauss-Seidel method for solving a system of linear equations. Obtain the 6 sufficient condition for convergence of Gauss-Seidel method.

GROUP-C

	Answer any <i>two</i> questions from the following	12×2 =24
. (a) Evaluate	$\int_{0}^{\pi/2} \sqrt{1 - 0.162 \sin^2 \theta} d\theta$, by Simpson's $\frac{1}{3}$ rd rule, correct upto 4 decimal	6

places taking 12 points.

3.

(b) Given $\frac{dy}{dx} = \frac{-y}{1+x}$, y(0.3) = 2. Compute y(1) by Euler's method, correct upto four decimal places, taking step length h = 0.1.

6

6

6

6

6

6

4. (a) Solve the system of equations by Gauss-elimination method

$$3x + 9y - 2z = 11$$

$$4x + 2y + 13z = 24$$

$$4x - 2y + z = -8$$

correct upto 2 decimal places.

- (b) Using Newton-Raphson method find a positive root of the equation $e^x 3x = 0$ 6 correct upto four decimal places.
- 5. (a) Find f(x) as a polynomial in x by using the following table:

x	<i>x</i> 0 2		4	6	8	
f(x)	2.51881	2.53148	2.54407	2.55630	2.56820	

(b) Obtain the missing terms in the following table:

x		1	2	3	4	5	6	7	8
f(z)	x)	1	8	*	64	*	216	343	512

- 6. (a) Explain the method of fixed point iteration with the condition of convergence for numerical solution of an equation of the form $x = \phi(x)$.
 - (b) What is interpolation? Establish Lagrange's polynomial interpolation formula.