

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2021

SEC1-P1-COMPUTER SCIENCE

The figures in the margin indicate full marks.

The question paper contains SEC35-E1, SEC35-E2 and SEC35-E3. The candidates are required to answer any *one* from the *three* courses. Candidates should mention it clearly on the Answer Book.

SEC35-E1

DIGITAL ELECTRONICS AND SYSTEM MAINTENANCE

Time Allotted: 2 Hours

Full Marks: 60

GROUP-A

	Answer any <i>four</i> questions from the following	3×4 = 12
1.	State and prove De Morgan's theorem.	3
2.	Simplify the following expression: Y = AB + (AC)' + AB'C(AB + C)	
3.	What is a Karnaugh Map? State the limitations of Karnaugh map. What are called don't care conditions?	3
4.	What is propagation delay? Define fan-in.	3
5.	Find the canonical POS form of $Y = A + \overline{B}C$.	3
6.	Do as directed: (a) $(250.5)_{10} \rightarrow (?)_2$, $(?)_{16}$ (b) $(11010)_2 - (1101)_2$ using 2's complement.	3

GROUP-B

	Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
7.	Reduce the following function using K-map technique:	6
	f(A, B, C, D) = M(0, 3, 4, 7, 8, 10, 12, 14) + d(2, 6)	

- 8. (a) Explain Full-Subtractor. Implement a full subtractor using half-subtractors. 6
 - (b) What is PLA?

9.	Design a combinational circuit that converts a four-bit reflected-code number to a four-bit binary number. Implement the circuit using Ex-OR gates.			
10.	Describe triggering of Flip-Flops and explain operation of an edge-triggered D Flip-Flop.			
11.	What is operating system? Discuss about system backup, system recovery and disk defragmentation.	6		
12.	Discuss briefly how to install an operating system in a computer.	6		
GROUP-C				
	Answer any two questions from the following	$12 \times 2 = 24$		
13.	Explain race-around condition in relation to the J-K flip-flops using timing relationships. Draw the clocked Master-Slave J-K flip-flop configuration and explain how it removes race-around conditions in J-K flip-flop.	12		
14.	Differentiate between asynchronous counter and ripple counter. Explain BCD ripple counter with logic diagram and timing diagram.	12		
15.	Write short notes on:	12		
	(a) Minterms and Maxterms			
	(b) Registers			
	(c) Encoders and decoders.			
16.	Write short notes on:	12		
	(a) Utility Software			
	(b) Antivirus Software			

(c) Device Manager.

SEC35-E2

WEBSITE DESIGN WITH HTML AND PHP

Time Allotted: 2 Hours		Full Marks: 40
	GROUP-A	
1. Answer any <i>five</i> qu	estions from the following:	$1 \times 5 = 5$
(a) What is PHP?		
(b) How would you cre	eate a banner in HTML?	
(c) What are radio but	ons?	
(d) What is PEAR in P	HP?	

(e) What do you understand by a Frameset?

- (f) Explain the difference between static and dynamic website.
- (g) How to make the text color in HTML?
- (h) What is the difference between "echo" and "print" in PHP?

GROUP-B

- 2. Answer any *three* questions from the following:
 - (a) Describe how would you create tables in HTML.
 - (b) What is a Form? How is a Form created?
 - (c) Describe the process of inserting graphics in HTML document.
 - (d) How to read and write a file in PHP?
 - (e) What is the array in PHP? Name the different types of array in PHP.

GROUP-C

- 3. Answer any *two* questions from the following:
 - (a) Write a HTML form to take as input username and password and use the submit button to transfer the control to another HTML file using HTTP "POST" method.
 - (b) Write a PHP script that finds out the sum of first *n* odd numbers.
 - (c) Create an HTML document which consists of ordered list, unordered list and image.
 - (d) Create a PHP page which accepts string from user. After submission that page displays the reverse of provided string.

SEC35-E3

PYTHON PROGRAMMING

Time Allotted: 2 Hours

GROUP-A

Answer any *four* questions from the following

- 1. What are operators in Python? Give examples.
- 2. Explain identifiers in Python.
- 3. Discuss tuples with the help of examples.
- 4. Discuss bitwise operators in Python with the help of an example.

Turn Over

Full Marks: 60

 $3 \times 4 = 12$

 $10 \times 2 = 20$

 $5 \times 3 = 15$

- 5. Discuss expressions in Python.
- 6. Discuss debugging in Python.

GROUP-B

Answer any *four* questions from the following

- 7. Explain different data types available in Python with the help of examples.
- 8. Write a Python program to find the GCD of two numbers.
- 9. Write a Python program to check if a string is palindrome or not.
- 10. Write a Python program to add two matrix and find the transpose.
- 11. Write a Python program to check if the given number is Prime or Not.
- 12. Write a Python program to check whether a given number is Armstrong or not.

GROUP-C

Answer any *two* questions from the following

- 13. Explain arrays in Python. Write a program in Python to demonstrate the implementation of arrays.
- 14. Write a program in Python to calculate total marks, percentage and grade of a student. Marks obtained in each of the three subjects are to be input by the user. Assign grades according to the following criteria.
 - (a) Grade A: Percentage > = 80
 - (b) Grade B: Percentage > = 70 and < 80
 - (c) Grade C: Percentage > = 60 and < 70
 - (d) Grade D: Percentage > 40 and < 60
 - (e) Grade E: Percentage < 40
- 15. Explain loops in Python with the help of examples.
- 16. Write a program in Python to generate Fibonacci series up to *n*-terms.

_x__

 $6 \times 4 = 24$

 $12 \times 2 = 24$