

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 5th Semester Examination, 2021

CC12-CHEMISTRY

PHYSICAL CHEMISTRY

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer any <i>four</i> questions from the following	$10 \times 4 = 40$
1. (a) Discuss the importance of Hamiltonian operator in quantum mechanics.	3
(b) Show that $(x, Px) = 0$. What conclusion can you draw from this result?	3
(c) Find out the Schrodinger wave equation for hydrogen atom.	2
(d) ψ^2 is more significant than ψ . — Explain.	2
2. (a) Calculate the first excitation energy of a proton confined to a region equal to diameter of a neucleus (10^{-15} m) . Mass of proton is $1.6 \times 10^{-24} \text{ g}$.	3
(b) The wavefunction for a particle in a ID-box is given as	4
$\psi(x) = A\sin\left(\frac{n\pi x}{l}\right)$	
What will be the value of <i>A</i> ?	
(c) Write short notes on Eigenvalue and Eigenvalue equation.	3
3. (a) Define R-branch and P-branch frequencies.	4
(b) Vibrational transitions of a diatomic molecule are normally accompanied by rotational transitions. — Explain.	3
(c) Calculate the smallest increment of energy that can be emitted or absorbed at a frequency $5 \times 10^{14} \text{ sec}^{-1}$ ($h = 6.62 \times 10^{-34} \text{ Jsec}$). Similarly calculate the energy required for electronic transition if excitation occurs by photons with wavelength 400 nm.	3
4. (a) How do you evaluate the structures, properties qualitatively by vibrational, rotational and electronic spectroscopics?	4
(b) Distinguish between fluorescience and phosphorescience.	3
(c) What is the explanation of Raman effect from quantum view point?	3

UG/CBCS/B.Sc./Hons./5th Sem./Chemistry/CHEMCC12/2021

- 5. (a) Lyophobic colloids are unstable both in presence of excess electrolytes and also in absence of electrolytes. Explain.
 - (b) What is Gold number?
 - (c) Define Lambert-Beers' law. What is the unit of absorbance (A)? Absorbance (A)
 2+1+2 value at a particular wavelength is founded to be unity. Calculate the fraction of incident photon took part in electronic transitions at that particular wavelength.
- 6. (a) Calculate the value of the classical-rotational partition function for 3 carbon monoxide molecule at 20°C (r = 1.1282 Å, atomic mass of C = 12.00390 and O = 16.0000).
 - (b) Using partition function, show that for a monoatomic gas,

$$E = \frac{3}{2}NkT, P = \frac{NkT}{V}$$

__×___

4

3

3

2

(c) Define the Boltzmann distribution law.