

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 2nd Semester Examination, 2022

GE1-P2-PHYSICS

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains GE2A and GE2B. Candidates are required to answer any *one* section from the *two* sections and they should mention it clearly on the Answer Book.

GE2A

ELECTRICITY AND MAGNETISM

GROUP-A

1. Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$
(a) Find the value of x for which $\vec{A} = \hat{i} + x\hat{j} + \hat{k}$ and $\vec{B} = 2\hat{i} - 2\hat{j} - 2\hat{k}$ a perpendicular.	re 1
(b) Write the differential form of Gauss's law of electrostatic.	1
(c) Define the unit of capacitance.	1
(d) Why the equipotential surfaces do not intersect each other?	1
(e) Define electric flux.	1
(f) What do you mean by intensity of magnetism?	1
(g) Write down the equation of continuity of current.	1
(h) Write the Maxwell equation which indicates the absence of magnet monopole.	ic 1

GROUP-B

Answer any three questions from the following	$5 \times 3 = 15$
2. (a) Find the unit normal to the surface $x^2y + 2xz = 4$ at the point $(2, -2, 3)$.	2
(b) If \bar{r} be the position vector then find the value of grad $(\frac{1}{r})$.	3
3. (a) Find the capacitance of a parallel plate capacitor when a dielectric of breadth 't' is placed between the plates of the capacitor.	4
(b) Write the integral form of Ampere's circuital law.	1

UG/CBCS/B.Sc./Hons./2nd Sem./Physics/PHYSGE2/2022

4. (a) Define electric dipole. Give unit of electric dipole moment.	1+1
(b) Find the electric potential at a point due to electric dipole.	3
5. (a) State and explain Lenz's law. Also show that it supports the conservation of energy.	4
(b) Write down the Maxwell equation, which can be derived from Faraday and Lenz law.	1

6. State and explain Biot-Savart law in magnetostatic and hence calculate the 2+3 magnetic induction at a point due to a straight infinitely long current carrying wire. (Assume steady current flow)

GROUP-C

Answer any *two* questions from the following $10 \times 2 = 20$

3

2

5

5

- 7. (a) Find the value of $\operatorname{div}(r^n \vec{r})$, where $\vec{r} = x\hat{i} + y\hat{i} + z\hat{k}$. Find the value of *n* for 4+2 which $(r^n \vec{r})$ is solenoidal.
 - (b) If $\vec{v} = \vec{w} \times \vec{r}$, show that $\frac{1}{2} \operatorname{curl} \vec{v} = \vec{w}$, where \vec{w} is a constant vector and \vec{r} is the position vector.
- 8. (a) Find the electric field for a plane charged sheet using Gauss's theorem. 5
 - (b) Prove that,

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}$$

where ϕ , ρ and ε_0 have their usual meaning.

- (c) Find the electric field at point (2, 1, 2) where electric potential is given by $\phi = -x^2y + 2z$.
- 9. (a) Distinguish between dia, para and ferromagnetic substances.
 - (b) A steady current *I* flows down a long cylindrical conductor of radius *a*. The current density at a distance *r* from the axis of the conductor is proportional to *r*. Calculate the magnetic field both inside and outside of the wire as a function of *r*.
- 10.(a) Show from Maxwell's equation that velocity of a plane electromagnet wave in an isotropic dielectric medium is, $v = c/\sqrt{k}$, where k is dielectric constant of that medium.
 - (b) What is poynting vector? Find its relationship with electric and magnetic field. 2+3

GE2B

WAVES AND OPTICS

GROUP-A

1. Answer any *five* questions from the following:

- (a) What is the condition of occurrence of resonance in a forced harmonic oscillator?
- (b) Why sound waves cannot be polarized?
- (c) Light waves from the two sources of the same intensity 'T' interfere. The intensity of light of maxima is given by:
 - (i) I (ii) I^2 (iii) 2I (iv) $4I^2$
- (d) Why the central fringe formed due to the interference from Lloyd's mirror is black?
- (e) What do you mean by plane polarized light?
- (f) What is the effect on the diffraction pattern if the distance between the slits is made very large?
- (g) What do you mean by a wavefront?
- (h) What is a 'negative zone plate'?

GROUP-B

		Answer any three questions from the following	$5 \times 3 = 15$
2.	(a)	Mention different possible modes of vibration in a stretched string fixed at its ends.	3
	(b)	Write down the advantages and disadvantages of reverberation.	2
3.	(a)	Distinguish between 'plane of vibration' and 'plane of polarization' by doing a pictorial representation of plane polarized light.	2
	(b)	Distinguish between the 'fringes of equal thickness' and the 'fringes of equal inclination' due to interference of light.	3
4.	(a)	What are 'nodes' and 'anti-nodes'?	2
	(b)	Show that the principle of superposition is a consequence of the linearity of equation of motion.	3
5.	(a)	What is a diffraction grating?	1
	(b)	Describe the nature of a fringe pattern when the white light is incident on a grating.	2
	(c)	In Fraunhofer diffraction pattern formed by a single slit, suppose that the slit width is 0.03 cm and the wavelength of light is 6×10^{-5} cm. Find the diffraction angle for the first dark band.	2

 $1 \times 5 = 5$

3

UG/CBCS/B.Sc./Hons./2nd Sem./Physics/PHYSGE2/2022

6. (a) Describe how Michel	in be	used to determine the	3
wavelength of a monoc			
(b) Distinguish between the	and the	e biprism fringes.	2

GROUP-C

Answer any two questions from the following	$10 \times 2 = 20$
(a) A particle is subjected to two collinear simple harmonic motions of same frequency but having different amplitude. Find the expression for resultant motion.	5
(b) Show the graphical representation of beats.	2
(c) Calculate the amplitude and initial phase of the harmonic oscillations obtained by superposition of two collinear simple harmonic oscillations represented by following equations:	3
$x_1 = 0.02\sin\left(5\pi t + \frac{\pi}{2}\right)$	
$x_2 = 0.03\sin\left(5\pi t + \frac{\pi}{4}\right)$	
(a) What is the quality factor of a forced vibrating system? Derive the relation $Q = \frac{1}{2b}\sqrt{\frac{k}{m}}$, where the symbols have their usual meaning.	1+2
(b) Differentiate between amplitude and velocity resonance	3

(b) Differentiate between amplitude and velocity resonance.	3
(c) Give an example of forced vibration and resonance.	2
(d) Define intensity and loudness of sound.	1+1

9. (a) Describe the formation of Newton's ring and find expressions for:	2+3+2
--	-------

- (i) diameter of bright and dark rings
- (ii) Fringe-width.
- (b) Calculate the fringe-width of interference pattern produced in Young's double 3 slit experiment, with the slits 10⁻³ m apart, on a screen 1 m away. Wavelength of light is 5893 Å.

10.(a) Explain the rectilinear propagation of light on the basis of the wave theory.	5
(b) What is a zone plate? Compare the zone plate with a convex lens.	1+2
(c) A zone plate has focal length 50 cm at a wavelength 6000 Å. What will be its	2
focal length at $\lambda = 5000$ Å?	

×

7.

8.