

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2022

# **CC10-PHYSICS**

## ANALOG SYSTEMS AND APPLICATIONS

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$ 

The figures in the margin indicate full marks. All symbols are of usual significance.

## **GROUP-A**

1. Answer any *five* questions from the following:

- (a) At a high temperature an extrinsic semiconductor behaves like an intrinsic semiconductor. Explain.
- (b) For a certain transistor with  $\alpha_{dc} = 0.98$  and emitter current  $I_E = 2 \text{ mA}$ , calculate the base current.
- (c) What is the virtual ground of an operational amplifier?
- (d) What is the open loop gain of an operational amplifier?
- (e) What do you mean by the term 'avalanche breakdown' of a p-n junction diode?
- (f) What do you mean by the term *Q*-point of a transistor?
- (g) In a half wave rectifier, the peak value of the ac voltage across the secondary of the transformer is  $20\sqrt{2}$  volt. If, no filter circuit is used, calculate the maximum dc voltage across the load.
- (h) Draw the voltage transfer characteristics (VTC) of a Schmidt trigger circuit.

### **GROUP-B**

Answer any three questions from the following $5 \times 3 = 15$ 

- 2. (a) Explain the use of Zener diode as a voltage regulator with suitable circuit 4 diagram.
  (b) Write down the voltage-current relation in a p-n junction diode in forward bias 1
  - (b) Write down the voltage-current relation in a p-n junction diode in forward bias condition.
- 3. (a) Draw the energy-band diagram of a p-n junction diode and indicate the locations of donor level, acceptor level and fermi energy level in this diagram.

1

#### UG/CBCS/B.Sc./Hons./4th Sem./Physics/PHYSCC10/2022

(b) Calculate the values of dc resistance and ac resistance of a germanium p-n junction diode at temperature 27°C for applied voltage 0.1 volt, reverse saturation current  $I_0 = 20 \,\mu\text{A}$  and ratio of Boltzmann constant to electric charge of an electron  $= \frac{k_{\rm B}}{e} = \frac{1}{11600}$ .

| 4. | (a)          | Draw the diagram of the voltage divider biasing circuit in transistor and derive the expression of the base current $I_{\rm B}$ . | 3              |
|----|--------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|
|    | (b)          | Show that the value of stability factor for the voltage divider biasing method approaches to unity.                               | 2              |
| 5  | (2)          | Show that negative feedback in amplifiers can improve the stability of an                                                         | 1 1            |
| 5. | ( <i>a</i> ) | amplifier.                                                                                                                        | $1\frac{1}{2}$ |
|    | (b)          | Show that negative feedback can change the input impedance of an amplifier.                                                       | $1\frac{1}{2}$ |
|    | (c)          | Explain why common emitter configuration is preferred for amplifier design.                                                       | 2              |
| 6. | (a)          | Draw a net diagram of a RC-phase shift oscillator.                                                                                | 2              |
|    | (b)          | Write down the expression for frequency of oscillation in RC-phase shift oscillator. (Derivation is not needed).                  | 1              |
|    | (c)          | Why three identical R-C sections are used in R-C phase shift oscillator?                                                          | 2              |

#### **GROUP-C**

#### Answer any *two* questions from the following $10 \times 2 = 20$

7. (a) Draw and label the circuit diagram of a small signal single stage low frequency 2+1+1+1+2 transistor amplifier in the CE mode.

Using the h parameters, obtain the expressions of current gain, input impedance, voltage gain and output impedance of this transistor amplifier.

(b) Calculate the values of  $I_B$ ,  $I_C$ ,  $I_E$  and  $V_{OE}$  for the transistor circuit given below.

Assume,  $\beta = 50$ ,  $V_{BE} = 0.7$  volt.



8. (a) Derive the expression of output voltage for inverting amplifier with proper circuit diagram.

3

2

## UG/CBCS/B.Sc./Hons./4th Sem./Physics/PHYSCC10/2022

| (b)    | Why inverting amplifier circuit is also known as 180° phase shifter circuit?                                                                                                                                                                  | 1   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (c)    | Show that the electrical mobility of the electrons in a semiconductor is                                                                                                                                                                      | 3   |
|        | $\mu = \frac{e\tau}{m^*}$ , where the symbols have their usual meanings.                                                                                                                                                                      |     |
| (d)    | What are the differences between Field Effect Transistor (FET) and Bipolar Junction Transistor (BJT)?                                                                                                                                         | 2   |
| 9. (a) | Draw the circuit diagram of a full wave bridge rectifier using semiconductor diodes.                                                                                                                                                          | 2+4 |
|        | Find out the expressions of Ripple factor and Rectification efficiency of this full wave bridge rectifier.                                                                                                                                    |     |
| (b)    | The band gap of a specimen of gallium arsenide phosphide is 1.98 eV.                                                                                                                                                                          | 2   |
|        | Determine the wavelength of the electromagnetic radiation that is emitted upon direct recombination.                                                                                                                                          |     |
|        | What is the colour of the emitted radiation?                                                                                                                                                                                                  |     |
| (c)    | State and explain the Barkhausen criterion for an oscillator.                                                                                                                                                                                 | 2   |
| 10.(a) | Explain the operation of an OPAMP as a                                                                                                                                                                                                        | 3+3 |
|        | (i) Differentiator                                                                                                                                                                                                                            |     |
|        | (ii) Integrator.                                                                                                                                                                                                                              |     |
| (b)    | What should be the input resistance, output resistance, voltage gain and band width of an ideal OPAMP?                                                                                                                                        | 2   |
| (c)    | At the temperature 300 K, the intrinsic carrier concentration of silicon is $1.5\times10^{16}m^{-3}.$                                                                                                                                         | 2   |
|        | If the electron and the hole mobilities are $0.13 \text{ m}^2 \text{v}^{-1} \text{s}^{-1}$ and $0.05 \text{ m}^2 \text{v}^{-1} \text{s}^{-1}$ respectively, determine the value of intrinsic resistivity of the silicon at temperature 300 K. |     |

\_\_×\_\_\_

\_