

UNIVERSITY OF NORTH BENGAL B.Sc. Honours Part-III Examination, 2022

PHYSICS

PAPER-IX

Time Allotted: 4 Hours

Full Marks: 90

3

3

3

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer question no. 1 and *five* other from the rest, taking at least *one* from each group but not more than *two* from a group

- 1. (a) Show that the momentum operator $-i\hbar \vec{\nabla}$ is a Hermitian operator.
 - (b) Obtain the expression for the probability current density for the wave function $\psi(r) \propto e^{ikr}/r$.
 - (c) Prove that the eigenfunctions belonging to distinct eigenvalues of a Hermitian operator are mutually orthogonal.

(d) Find out the eigenfunction and eigenvalue of the operator $-i\frac{d}{dx}$, if the 3 eigenfunction $\psi(X)$ follows the condition $\psi(X) = \psi(x+a)$.

(e) The series limit of the Balmer series is at 3646Å. Calculate the wavelength of the first line of the series.

GROUP-A

(ATOMIC PHYSICS)

2. (a) Describe Thomson's method for the determinates of e/m of an electron. What are the drawbacks of this method?	5+1
(b) What is the Bohr magneton? What modification is introduced in Bohr's theory of an atom due to the finite mass of a nucleus?	2+3
(c) Find out the expressions for the magnetic dipole moment due to the orbital motion of an electron and the corresponding gyromagnetic ratio.	4
3. (a) What are normal and anomalous zeeman effects? Outline the theory of normal Zeeman effect.	3+3
(b) State and explain Pauli's exclusion principle. How do you explain the D_1 and D_2 doublet of sodium on the basis of electron spin?	3+3
(c) The ionisation potential of an atom is 13.6 V. With what minimum velocity should an electron strike so that it may be ionised?	3

- 4. (a) Describe the Stern and Gerlach's experiment. Explain the experimental results. 3 + 1
 - 4 + 2(b) State and explain Moseley's law and discuss its importance. Show that this law can be deduced from modified Bohr's theory.
 - (c) Show that the magnetic moment of an atom can be expressed as

$$\mu_j = \mu_B g \sqrt{J(J+1)} ,$$

where $\mu_{\scriptscriptstyle B}$ is the Bohr magneton, g is Lande g factor and J is the total angular momentum quantum number.

GROUP-B

(QUANTUM MECHANICS)

5. (a) Find out the commutation relation $[e^{ikx}, \hat{p}_x]$, where x and p_x have their usual significance.

(b) The ground state wave function of hydrogen atom is given by $\psi(r) = \sqrt{\frac{1}{\pi a^3}} e^{-r/a}$, 2+2

where r measures the distance from the nucleus and 'a' is the Bohr radius (constant). Write down the probability that the electron lies between r and r + dr. Hence show that the most probable value of r is a.

(c) Prove the following operator relation

$$\left[\frac{1}{x}\frac{d}{dx}x\right]^2 = \frac{d^2}{dx^2} + \frac{2}{x}\frac{d}{dx}$$

Verify whether the above operator is hermitian or not.

- (d) State and explain Heisenberg's energy-time uncertainty principle.
- 6. (a) Set up the Schrödinger equation for a linear harmonic oscillator. Solve it to obtain 2 + 8the energy eigenvalues and eigenfunctions. Highlight the physical significance of the asymptotic behaviour of the wave functions.
 - (b) What is the significance of the zero point energy? Calculate the zero point energy 2+3of a mass 1.67×10^{-24} gm connected to a fixed point by a spring with a force constant 10^4 dyne/cm.
- 7. (a) A hydrogen atom is in a state represented by the wave function

$$\psi(\vec{r}) = \frac{1}{\sqrt{3}}\psi_{200}(\vec{r}) + \sqrt{\frac{3}{2}}\psi_{210}(\vec{r})$$

where $\psi_{nlm}(\vec{r})$ is the energy eigenfunction of the *H* atom with energy

$$E_n = -\frac{me^4}{32\pi^2\varepsilon_0^2 n^2 h^2}$$

Does this state possess definite values of E, L^2 and L_z ? Explain. Calculate the expectation values of these quantities with respect to the state $\psi(\vec{r})$.

(b) Using the uncertainty principle estimate (i) the ground state energy of a harmonic 2 + 2oscillator and (ii) the radius of the first Bohr orbit of a hydrogen atom.

6

5

3

2+4

2

B.Sc./Part-III/Hons./(1+1+1) System/PHSH-IX/2022

(c) Show that for a particle of rest mass m_0 and wave length λ , the phase velocity of 3+2 the de Broglie wave is

$$v_p = c\sqrt{1 + (m_0 c\lambda/h)^2}$$

Also show that the corresponding group velocity v_g , is the same as the velocity of the particle.

GROUP-C

(NUCLEAR AND PARTICLE PHYSICS)

- 8. (a) Explain the terms, mass defect and binding energy of a nucleus.
 - (b) Show graphically how the nuclear binding energy per nucleon varies with the 2+2 mass number. Explain the different parts of the graph.
 - (c) A free neutron decays into a proton, an electron and an anti-neutrino. If M(n) = 1.00898u, M(p) = 1.00759u and M(e) = 0.00055u. Calculate the kinetic energy shared by the electron and the anti-neutrino.
 - (d) What is meant by the activity of a radioactive sample? What are its different 2+2 units?
- 9. (a) Describe the construction and the working principle of a GM counter. How is quenching achieved in it? What are dead time, resolving time and recovery time?
 - (b) In a radioactive decay process, λ_1 and λ_2 are the decay constants of parent and daughter nuclei respectively. Prove that the time at which the number of daughter nuclei become maximum is given by

$$t_m = \frac{\ln(\lambda_2/\lambda_1)}{(\lambda_2 - \lambda_1)}$$

- (c) Explain the straggling of the range of α particles.
- 10.(a) Write down the Bethe-Weizsacker mass formula and explain the different terms 5 present in it.
 - (b) A beam of monoenergetic γ rays is incident on an Al sheet of thickness 8 cm. The sheet reduces the intensity of the beam to 20% of the original value. Calculate the linear and mass absorption coefficients. [Given the density of $Al = 2700 \text{ kg m}^{-3}$].
 - (c) Check whether the following reactions are allowed or forbidden 1

(i)
$$\mu^- \rightarrow e^- + \nu_e + \bar{\gamma}_e$$

- (ii) $\overline{V}_{\mu} + p \rightarrow n + \mu^+$
- (iii) $\pi^0 \rightarrow \gamma + \gamma$
- (iv) $\Lambda^0 + \Xi^- \rightarrow \overline{p} + \Sigma^+ + e^-$

 $1\frac{1}{2} \times 4 = 6$

2

4

2 + 2