

UNIVERSITY OF NORTH BENGAL

BBA Honours 3rd Semester Examination, 2020

GE3-BBA (304)

QUANTITATIVE TECHNIQUES FOR MANAGEMENT

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer any two assignments

1. (a) Solve graphically the following LPP:

Maximize z = 8x + 5y

Subject to the constraints:

- $x \leq 150$,
- $y \leq 250$,

 $2x + y \le 500,$

and $(x, y) \ge 0$.

- (b) An oil company requires 12,000, 20,000, and 15,000 barrels of high-grade, medium-grade and low-grade oil respectively. Refinery A produces 100, 300 and 200 barrels per day of high-grade, medium-grade and low-grade oil respectively, while refinery B produces 200, 400 and 100 barrels per day of high-grade, medium-grade and low-grade oil respectively. If refinery A cost Rs. 40,000 per day and refinery B cost Rs.30,000 per day to operate, for how many days should each B run to minimize cost while satisfying requirements? (Solve it using Simplex Method).
- 2. (a) Solve the following LPP by Big-M Method:

Minimize $z = x_1 - 3x_2 + 2x_3$

Subject to the constraints:

$$3x_1 - x_2 + 2x_3 \le 7,$$

$$-2x_1 + 4x_2 \le 12,$$

$$-4x_1 + 3x_2 + 8x_3 \le 10,$$

and $(x_1, x_2, x_3) \ge 0.$

(b) Prove that dual of dual is the primal of a Linear Programming Problem.

12+18=30

20+10=30

UG/CBCS/BBA/Hons./3rd Sem./BBAGE3/2020

3. (a) For the following transportation problem obtain the different starting solutions 18+12 = 30 by adopting the North-West corner method and Vogel's approximation method and find out which solution is better?

	D_1	D_2	D_3	a_i
O_1	5	1	8	12
O_2	2	4	0	14
O_3	3	6	7	4
b_{j}	9	10	11	

(b) Obtain an optimal basic feasible solution to the following transportation problem:

	W_1	W_2	W_3	W_4	
F_1	19	30	50	10	7
F_2	70	30	40	60	9
F_3	40	8	70	20	18
	5	8	7	14	

_×—