

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2020

SEC1 (P1)-MATHEMATICS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains SEC1A and SEC1B. Candidates are required to answer any *one* from the *two* SEC1 courses and they should mention it clearly on the Answer Book.

SEC1A

C++

GROUP-A

1.	Answer <i>all</i> questions:	2×6=12
(a)	How to use multiline comment in C++?	2
(b)	Is this program statement valid?	2
	INT = 11.55 ; — Justify.	
(c)	Identify the errors, if any, in the following initialization statement:	2
	static int number $[] = \{0, 0, 0, 0\}$	
(d)	Can I use "int" data type to store the value 589462? — Justify.	2
(e)	What is the difference between new () and malloc ()?	2
(f)	What is 'll' operator and how does it function in a program?	2

GROUP-B

2.	Answer all questions:					5×4=20	
(a	a) Make a flow chart and write a program in C++ to compute a real root of $x^2 - a^2 = 0$, where <i>a</i> is any real number.						
(b	(b) Write a loop statement in C++ that will show the following output:						
	5						
	5	4					
	5	4	3				
	5	4	3	2			
	5	4	3	2	1		

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHSEC1/2020

- (c) Write a C++ algorithm to exchange the biggest and smallest digits of an input number.
- (d) What is increment operator in C++? Write the difference between the prefix and 5 postfix notation of increment operator using proper example.

GROUP-C

3. Answer *all* questions:

(a) What is demonstrated by the following function?

```
inline int cube (int s)
{
    return s*s*s;
} int main ()
{
    cout << "The cube of 3 is :" << cube (3)
    << "\n";
}</pre>
```

Is the above function a number function? Is it possible for the C++ compiler to ignore 4 inlining?

- (b) (i) When there are global variable and local variable with the same name? How will 3 you access the global variable?
 - (ii) Calculate the factorial of a positive integer using 'while' loop in C++.
- (c) (i) What will be the output of the following program?

#include <iostream>

```
using namespace std;
int main ( )
{
    int var;
    for (var = 200; var > = 10; var - -)
    {
        cout << "var:" < var << end1;
        if (var = = 197)
        {
            break;
        }
        }
        cout << "I am out of the loop";
    }
</pre>
```

(ii) Write the difference between the if-else ladder and switch statement.

5

 $7 \times 4 = 28$

3

4

4

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHSEC1/2020

- (d) (i) Write function in 'C++' to obtain Fibonacci triangle as follows:

 - (ii) Write C++ algorithm to find transpose of a matrix.

SEC1B LOGIC AND SETS

GROUP-A

1. Answer *all* questions:

(a) Suppose
$$A_n = \left\{ x \in \mathbb{R} \mid 2 + 1/n \le x \le 10 - \frac{1}{n} \right\}, \forall n \in \mathbb{N}.$$
 Find $\left[\bigcup_{n \in \mathbb{N}} A_n \right]^c$. 2

- (b) Show that (A B) and $(A \cap B)$ are disjoint sets.
- (c) If n(P(P(A))) = 16, then find n(A).
- (d) Suppose that A, $B \subseteq C$. Can we conclude that $C \setminus A$ contains B? If it is true then prove it. Otherwise, what is the other condition do we need to add in order to make it true?
- (e) Show that empty set is a subset of all non-null set.
- (f) Let A, $B \subseteq U$. Prove that $A \subseteq B \Leftrightarrow A \cap B^c = \phi$.

GROUP-B

2.	Answer <i>all</i> the following questions:	5×4=20
(a)	Show that the number of reflexive relations on a set of <i>n</i> elements is 2^{n^2-n} .	5
(b)	Prove that $[0, 2]$ is an uncountable set.	5
(c)	Prove that the set $X = \left\{ n \in \mathbb{N} \mid n \le \sqrt{5} \right\}$ is finite but the set $Y = \left\{ X \in \mathbb{Q} \mid x \le \sqrt{5} \right\}$ is	5
	infinite.	
(d)	Show that for all set A, B, C:	5
	(i) $(A-B) - (B-C) = A - B$	
	(ii) $\overline{(A-B)-(B-C)} = \overline{A} \cup B$	

3

3

2×6=12

2

2

2

2 2

GROUP-C

3.	Ans	wer <i>all</i> the following questions:	7×4=28			
(a)	(a) Prove that $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.					
	Hence Show that					
	$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$					
(b)	(i)	Which of the following pair of sets are equal? Give your reasons.	4+3=7			
		(I) $A = \{n \in \mathbb{Z} : 5 < 2n + 1 < 16\}, B = \{n \in \mathbb{Z} : 3 \le n < 8\}$				
		(II) $A = \{n \in \mathbb{R} : x^3 = x\}, B = \{x \in \mathbb{Z} : \frac{1}{x} = 1 \text{ or } -1\}$				
	(ii)	If <i>A</i> and <i>B</i> be two finite sets, then prove that $(A \Delta B)^c = (A^c \cup B) \cap (A \cup B^c)$.				
(c)	(i)	Prove that a relation ρ on a set A is symmetric, if and only if $\rho^{-1} = \rho$.	4+3=7			
	(ii)	If ρ be a relation from A to B then the domain of ρ is the range of ρ^{-1} and the range of ρ is the domain of ρ^{-1} .				
(d)	(i)	If $A \cap B = \phi$ then prove that $(B \cap A') \cup B' = S$, where S is a universal set.	3+4=7			
	(ii)	Prove that the set of all even integers if infinite but countable.				
		X				