

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 5th Semester Examination, 2020

CC11-MATHEMATICS

GROUP THEORY-II

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1.	Answer the following questions:	
(a)	Let G be a group and $a \in G$. Show that $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$	2
(b)	Show that $4\mathbb{Z} 12\mathbb{Z} \simeq \mathbb{Z}_3$.	2
(c)	Let G be a group and $x \in G$. Define stabilizer of x in G.	2
(d)	State the class equation for a finite group.	2
(e)	Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be defined by $f(x) = x^2$. Show that f is a homomorphism from (\mathbb{R}^+, \cdot) to (\mathbb{R}^+, \cdot) . Find the kernel of f .	2
(f)	Define an action of a group on a set <i>X</i> .	2

GROUP-B

2.	Answer the following questions:	$5 \times 4 = 20$
	(a) If G acts on X and $x \in X$, then show that $stab_G(x)$ is a subgroup of G.	5
	(b) If G is a finite group of order p^2 , where p is prime, then show that G is abelian.	5
	(c) Let G be a group, for $g \in G$ define $T_g : G \to G$ by $T_g x = g^{-1} xg$, $\forall x \in G$. Show that T_g is an automorphism.	5
	(d) If G is a group of order $p^n (n > 0)$, where p is a prime, then prove that $Z(G) \neq \{e\}$.	5

GROUP-C

3.	Answer the following questions:		
(a)) (i)	Show that the number of even permutations in S_n , $(n \ge 2)$ is the same as that of the odd permutations.	5+2=7
	(ii)	Let G be a group. Define $f: G \to G$ by $f(a) = a^{-1}$, $\forall a \in G$. Prove that f is a homomorphism if G is commutative.	
(b)) (i)	Let G be a group. Let us define a set $X = \{aba^{-1}b^{-1} : a, b \in G\}$. Show that X is a subgroup of G.	3+4=7
	(ii)	Let G be a group. Show that $\mathcal{J}(G)$ is a normal subgroup of Aut(G), where $\mathcal{J}(G)$ is the inner automorphism of G.	
(c)) Sho of <i>n</i>	w that the number of conjugate classes in S_n is $p(n)$, the number of partitions p_n .	7
(d)) (i)	Let G be a group and φ an automorphism of G. If $a \in G$ is of order $O(a)$, then show that $O(\varphi(a)) = O(a)$.	3+4=7
	(ii)	Let G be a group. Show that $\mathcal{J}(G) \simeq G Z(G)$, where $\mathcal{J}(G)$ is the group of inner automorphisms.	

—×—