

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2020

CC12-CHEMISTRY

PHYSICAL CHEMISTRY

Full Marks: 40

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

		Answer any <i>four</i> questions from the following	$10 \times 4 = 40$
1.	(a)	Define and explain operators in Quantum Mechanics.	2
	(b)	Derive Schrodinger Wave Equation (time independent) and also express it by using Laplacian and Hamiltonian operators.	4+2
	(c)	What are eigen values and eigen functions?	2
2.	(a)	Briefly explain normalized and orthogonal wave functions.	$1\frac{1}{2}+1\frac{1}{2}$
	(b)	What are Orthonormal wave functions?	1
	(c)	Solve Schrodinger wave equation for a particle in one dimensional box and also evaluate its energy.	4
	(d)	Justify the existence of Zero Point Energy.	2
3.	(a)	Explain why Heisenberg's Uncertainty Principle is of paramount importance for macroscopic particles but insignificant for macroscopic bodies.	2
	(b)	State and explain the Postulates of Quantum Mechanics.	5
	(c)	What is it that $\psi \psi^*$ is taken instead of ψ^2 ?	1
	(d)	What will happen if the walls of a one-dimensional box are suddenly removed?	2
4.	(a)	Pure vibrational transition without affecting rotation is not permitted. Explain.	2
	(b)	Which of the two H ₂ and HCl will give rotational spectra and why?	2
	(c)	Explain the fact that pure rotational Spectra of a linear rotor consists of a series of lines with constant Spacing.	3
	(d)	What is Born-Oppenheimer approxmiation?	3
5.	(a)	Using the energy level expression and appropriate selection rule draw an energy Level diagram and the Spectral transitions for the vibration-rotation spectrum of a diatomic molecule.	5

1

UG/CBCS/B.Sc./Hons./5th Sem./Chemistry/CHEMCC12/2020

	(b)	What are the P- and R-branch in vibration-rotation Spectra of a diatomic molecule?	3
	(c)	How does an harmonicity affect the vibrational spectra of diatomic molecules?	2
6.	(a)	What is Raman Effect?	2
	(b)	What are Rayleigh, Stokes' and Anti-Stokes' lines in Raman Spectra?	4
	(c)	Although CO_2 has no permanent dipole moment, it can produce both Infra red and Raman Spectra. Explain.	4
7.	(a)	State and explain Lambert-Beer's Law. Derive the integrated mathematical expression for this law.	2+3
	(b)	What is the significance of molar extinction coefficient?	1
	(c)	What is quantum efficiency?	2
	(d)	Quantum yield of H_2 and Cl_2 reaction is high but that of H_2 and Br_2 is low at ordinary temperature, although both are chain reactions. Explain.	2
8.	(a)	Explain Photosensitized reactions with suitable examples.	2
	(b)	Write a note on Chemiluminescence.	3
	(c)	What are the advantages of Raman Spectroscopy over IR Spectroscopy?	2
	(d)	If two operators A and B commute, then show that they have the same set of eigen functions.	3

—×—