

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2020

CC12-MATHEMATICS

NUMERICAL METHODS

Full Marks: 40

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer all questions

GROUP-A

1.		Answer <i>all</i> the following questions:	$2 \times 5 = 10$
	(a)	If $u(x, y, z) = xyz^2$ and errors in x, y, z are 0.005, 0.001 and 0.002 respectively at $x=3$, $y=1$, $z=1$. Compute the maximum absolute error in evaluating u at $(3, 1, 1)$.	2
	(b)	Show that the following rearrangement of equation $x^3 + 6x^2 + 10x - 20 = 0$ does not yield a convergent sequence of successive approximations by iteration method near $x = 1$,	2
		$x = (20 - 6x^2 - x^3)/10$	
	(c)	Show that error in $(m+1)$ in iteration tends to zero as $m \rightarrow \infty$ in Bisection method.	2
	(d)	In the solution of the system $AX = B$ by Gauss Elimination method, if ΔB be the error in the solution, then how you justify that ΔB will be minimised by partial pivoting?	2
	(e)	How justify that the equation $\tan x + x = 0$ has exactly one root in [2, 2.5]?	2

GROUP-B

2.	Answer <i>all</i> the following questions:	$5 \times 6 = 30$
	(a) If α , β be the roots of $x^2 + ax + b = 0$, show that the iteration $x_{n+1} = \frac{-b}{(x_n + a)}$ will	5
	converge near $x = \alpha$ if $ \alpha < \beta $.	

UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHCC12/2020

(b) Use Gauss Elimination method to solve the following system of equations,	5
$-10x_1 + 6x_2 + 3x_3 + 100 = 0$	
$6x_1 - 5x_2 + 5x_3 + 100 = 0$	
$3x_1 + 6x_2 - 10x_3 + 100 = 0$	
(c) Write a program in C to solve the following equation by bisection method, correct upto 5 decimal places:	5
$10\log_{10} x - x^2 + 3 = 0$	
[Attach the copy of 'Run-Sheet']	
(d) Apply Gauss-Seidel iteration method to solve the system:	5
$9.37x_1 + 3.04x_2 - 2.44x_3 = 9.23$	
$3.04x_1 + 6.18x_2 + 1.22x_3 = 8.20$	
$-2.44x_1 + 1.22x_2 + 8.44x_3 = 3.93$	
(e) (i) Find the cube root of 10 upto 4 significant figures by Newton-Raphson method.	3+2
(ii) Write the flow-chart of Regula-Falsi method.	

(f) Write a program in 'C' to solve following system of equations by Gauss-Jacobi 5 iterative method, correct to 5 significant figures:

—×——

$$0.89x_1 + 4.32x_2 - 0.47x_3 + 0.95x_4 = 3.36$$

$$1.13x_1 - 0.89x_2 + 0.61x_3 + 5.63x_4 = 4.27$$

$$6.32x_1 - 0.73x_2 - 0.65x_3 + 1.06x_4 = 2.95$$

$$0.74x_1 + 1.01x_2 + 5.28x_3 - 0.88x_4 = 1.97$$

[Attach the copy of 'Run-Sheet']

5091