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UNIVERSITY OF NORTH BENGAL 
B.Sc. Honours 3rd Semester Examination, 2020  

CC5-MATHEMATICS 

THEORY OF REAL FUNCTIONS AND INTRODUCTION TO METRIC SPACES 

Time Allotted: 2 Hours Full Marks: 60 

ASSIGNMENT 

The figures in the margin indicate full marks. 

All symbols are of usual significance. 

 Answer all questions  

 GROUP-A  

1. Answer all questions: 2×6 = 12 

(a) Let  f  be a real valued function defined over [–1, 1] such that  
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Does the Mean Value Theorem hold? 
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(b) If 0,0  ba , then find x
b
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(c) Obtain a relation between a and b so that  1
sin2sin
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(d) Prove that a subset A of a metric space ),( dX  is a singleton set iff 0)( A . 2 

(e) Let   qpH qp ,;
3
1

2
1{ ℕ}. Then obtain (i) derived set H   of H (ii) derived 

set )( H  of H  . 
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(f) Let ]3,0[,|2||1|)(  xxxxf , show that 2 is a local minimum of  f. 2 

   

 GROUP-B  

2. Answer all questions: 5×4 = 20 

(a) Evaluate  
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(b) Show that the function  f  on [0, 1] defined as  
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is discontinuous at .....,,,
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(c) Prove that any two real roots of the equation 01cos xex  there is at least one 

real root of the equation 01sin xex . 
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(d) Let M denote the set of all bounded sequences of real numbers. If 
 1}{ nnxx  and 


 1}{ nnyy  are points of M, then prove that the function 
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is a metric on M. 
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 GROUP-C  

3. Answer all questions: 7×4 = 28 

(a) (i) Show that the volume of the greatest cylinders which can be inscribed in a 

cone of height h and semi-vertical angle  in  23 tan)274( h . 

(ii) A function :f  ℝ ⟶ ℝ is continuous function and 0)( xf  for all x ℚ. 

Prove that 0)( xf  for all x ℝ. 

4+3 

(b) (i) Prove that xx
x

x
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(ii) Let A be a non-empty subset of ℝ. A function :f  ℝ ⟶ ℝ is defined by 

}:|{|inf)( AaaxxfA  . Prove that Af  is uniformly continuous on ℝ. 

3+4 

(c) (i) Show that for all yx, ℝ, |tantan|),( 11 yxyxd    is a metric on ℝ, 

which is bounded too. 

(ii) Show that the sets A ℕ, 
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ℕ   in ℝ are closed and disjoint. 

What is ),( BAd ? 

4+3 

(d) (i) For each ),.....,,(),,.....,,( 2121 nn bbbaaa ℝn
, show that  
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(ii) If ),( dX  be a metric space. Then for each Xx and for each 0 , show 

that }),({  yxdXy  is an open subset and }),({  yxdXy  is a 

closed subset of X with respect to d. 

3+4 
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