

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2020

CC5-MATHEMATICS

THEORY OF REAL FUNCTIONS AND INTRODUCTION TO METRIC SPACES

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer all questions

GROUP-A

1.	Answer <i>all</i> questions:	2×6 = 12
	(a) Let f be a real valued function defined over $[-1, 1]$ such that	2
	$f(x) = \begin{cases} x \cos \frac{1}{x} & , & \text{when } x \neq 0 \\ 0 & , & \text{when } x = 0 \end{cases}$	
	Does the Mean Value Theorem hold?	
	(b) If $a > 0$, $b > 0$, then find $\lim_{x \to 0^+} \left[\frac{x}{a}\right] \frac{b}{x}$.	2
	(c) Obtain a relation between <i>a</i> and <i>b</i> so that $\lim_{x \to 0} \frac{a \sin 2x - b \sin x}{x^2} = 1$.	2
	(d) Prove that a subset A of a metric space (X, d) is a singleton set iff $\delta(A) = 0$.	2
	(e) Let $H = \{\frac{1}{2^p} + \frac{1}{3^q}; p, q \in \mathbb{N}\}$. Then obtain (i) derived set H' of H (ii) derived set $(H')'$ of H' .	2
	(f) Let $f(x) = x-1 + x-2 $, $x \in [0, 3]$, show that 2 is a local minimum of f .	2

GROUP-B

2.	Answer <i>all</i> questions:	$5 \times 4 = 20$
	(a) Evaluate $\lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$.	5

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC5/2020

(b) Show that the function f on [0, 1] defined as

$$f(x) = \begin{cases} \frac{1}{2^n} &, & \frac{1}{2^{n+1}} < x \le \frac{1}{2^n} &; & n = 0, 1, 2, \dots \\ 0 &, & x = 0 \end{cases}$$

is discontinuous at $\frac{1}{2}$, $\frac{1}{2^2}$, $\frac{1}{2^3}$,

- (c) Prove that any two real roots of the equation $e^x \cos x + 1 = 0$ there is at least one 5 real root of the equation $e^x \sin x + 1 = 0$.
- (d) Let *M* denote the set of all bounded sequences of real numbers. If $x = \{x_n\}_{n=1}^{\infty}$ and 5 $y = \{y_n\}_{n=1}^{\infty}$ are points of *M*, then prove that the function

$$d(x, y) = \lim_{1 \le n < \infty} |x_n - y_n|$$

is a metric on M.

GROUP-C

3. Answer *all* questions:

- (a) (i) Show that the volume of the greatest cylinders which can be inscribed in a 4+3 cone of height *h* and semi-vertical angle α in $(4/27)\pi h^3 \tan^2 \alpha$.
 - (ii) A function $f : \mathbb{R} \to \mathbb{R}$ is continuous function and f(x) = 0 for all $x \in \mathbb{Q}$. Prove that f(x) = 0 for all $x \in \mathbb{R}$.

(b) (i) Prove that
$$\frac{x}{1+x^2} < \tan^{-1} x < x$$
, if $x > 0$. $3+4$

- (ii) Let A be a non-empty subset of \mathbb{R} . A function $f : \mathbb{R} \to \mathbb{R}$ is defined by $f_A(x) = \inf \{ |x-a| : a \in A \}$. Prove that f_A is uniformly continuous on \mathbb{R} .
- (c) (i) Show that for all $x, y \in \mathbb{R}$, $d(x, y) = |\tan^{-1} x \tan^{-1} y|$ is a metric on \mathbb{R} , 4+3 which is bounded too.
 - (ii) Show that the sets $A = \mathbb{N}$, $B = \left\{ n + \frac{1}{2n} : n \in \mathbb{N} \right\}$ in \mathbb{R} are closed and disjoint. What is d(A, B)?

(d) (i) For each
$$(a_1, a_2, ..., a_n)$$
, $(b_1, b_2, ..., b_n) \in \mathbb{R}^n$, show that

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

(ii) If (X, d) be a metric space. Then for each $x \in X$ and for each $\varepsilon > 0$, show that $\{y \in X | d(x, y) < \varepsilon\}$ is an open subset and $\{y \in X | d(x, y) \le \varepsilon\}$ is a closed subset of X with respect to d.

-×-

3+4

 $7 \times 4 = 28$

5