

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2020

CC6-MATHEMATICS

GROUP THEORY-I

Full Marks: 60

 $2 \times 6 = 12$

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer *all* the following questions:

(a) Find the image of the elements 3 and 4 if $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & & 3 \end{pmatrix}$ be an odd permutation.

- (b) Give an example of a group of order 4 which is non-cyclic.
- (c) In a group (G, \circ) , *a* is an element of order 30. Find the order of a^{18} .
- (d) Find the number of elements of order 6 in S_4 .
- (e) If $G = \langle a \rangle$ is a cyclic group of order 40, find all the distinct elements of the cyclic subgroup $\langle a^{10} \rangle$.
- (f) Find all distinct left cosets of the subgroup $H = \{1, -1\}$ in the group $G = (R\{0\}, \cdot)$.

GROUP-B

- 2. Answer *all* the questions from the following:
 - (a) If an abelian group of order six contains an element of order 3, show that it must be a cyclic group.
 - (b) If p is a prime number and G is a non-abelian group of order p^3 , show that the centre of G has exactly p elements.
 - (c) Show that the four permutations *I*, (*ab*), (*cd*), (*ab*)(*cd*) on four symbols *a*, *b*, *c*, *d* form a finite abelian group with respect to the permutation multiplication.
 - (d) Use Lagrange's Theorem to prove that a finite group cannot be expressed as the union of two of its proper subgroups.

 $5 \times 4 = 20$

GROUP-C

3.		Answer	all the following questions:	$7 \times 4 = 28$
(a) Prove that for a square in the plane plane together form(b) Prove that the normal prove that the subgroup of the subgroup		Prove to square plane to	hat for a square with centre O , four symmetrics arising for rotation of the in the plane about O and four symmetrics arising for rotation out of the ogether form a non-commutative group.	7
		Prove the prove	Prove that the normaliser of a subgroup H of a group G is a subgroup of G and also prove that the subgroup H is a normal subgroup of the normaliser of H .	
	(c)	(i) Pro (<i>a</i>	ove that if G is an abelian group, then for all $a, b \in G$ and integers n, $ab)^n = a^n b^n$.	4+3
		(ii) If sul	<i>H</i> be a subgroup of a group <i>G</i> and $T = \{x \in G : xH = Hx\}$, prove that <i>T</i> is a bgroup of <i>G</i> .	
	(d)	If $C = 0$	(a) be a finite evalue group of order n then prove that for any divisor d of n	1 3

(d) If $G = \{a\}$ be a finite cyclic group of order *n*, then prove that for any divisor *d* of *n*, 4+3 there exists a subgroup of *G* of order *d* and also prove that subgroup will be unique.

____×____