

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2020

CC7-MATHEMATICS

RIEMANN INTEGRATION AND SERIES OF FUNCTIONS

Full Marks: 60

 $2 \times 6 = 12$

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer all questions

GROUP-A

1. Answer *all* questions:

- (a) Compute L(P, f) and U(P, f) if $f(x) = x^2$ on [0, 1] and $P = \{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\}$.
- (b) Show by an example that every bounded function need not be Riemann integrable.
- (c) If a power series $\sum_{n=0}^{\infty} a_n x^n$ converges for all real x, prove that $\lim_{n \to \infty} |a_n|^{1/n} = 0$.
- (d) Prove that the series $\sum_{n=0}^{\infty} \frac{1}{n^3 + n^4 x^2}$ is uniformly convergent for all real *x*.
- (e) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ where $a_n = 2^n + 3^n$, $n \ge 1$.
- (f) Give an example of function f and g both integrable on [a, b] such that

$$\int_{a}^{b} |f-g| = 0 \text{ but } f \neq g$$

GROUP-B

Answer all questions

1

 $5 \times 4 = 20$

2. Let $f_n(x) = \log(n^2 + x^2)$, $x \in \mathbb{R}$. Show that the sequence $\{f'_n\}$ is uniformly convergent on \mathbb{R} but $\{f_n\}$ is not uniformly convergent on \mathbb{R} .

3. Show that for the function f defined on $0 \le x \le 1$ as $f(x) = \sqrt{1 - x^2}$, x is rational = 1 - x, x is irrational $\int_{\underline{a}}^{b} f(x) dx = \frac{1}{2}$ and $\int_{a}^{\overline{b}} f(x) dx = \frac{\pi}{4}$ and so f(x) is not integrable on [0, 1].

5

5

 $7 \times 4 = 28$

4. A function *f* is defined on $\left(-\frac{1}{3}, \frac{1}{3}\right)$ by $f(x) = 1 + 2.3x + 3.3^2 x^2 + \dots + n.3^{n-1} x^{n-1} + \dots$ Show that *f* is continuous on $\left(-\frac{1}{3}, \frac{1}{3}\right)$. Evaluate $\int_{1/4}^{0} f$.

- 5. (a) Let $f:[a, b] \rightarrow R$ be function on [a, b]. Show that if f is integrable on [a, b] 4 then |f| is integrable on [a, b], but the converse is not true.
 - (b) Let $f_n(x) = \tan^{-1} nx$, $x \in [0, 1]$. Prove that the sequence $\{f_n\}$ is not uniformly 1 convergent on [0, 1].

GROUP-C

Answer *all* questions

- 6. (a) Let R(>0) be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$. Prove that the radius of convergence of the series obtained by integrating $\sum_{n=0}^{\infty} a_n x^n$ term-byterm is also R.
 - (b) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence R(>0) and f(x) be 4 the sum of the series on (-R, R). Show that $f^k(0) = k! a_k (k = 0, 1, 2,)$.
- 7. (a) Construct a sequence of functions {f_n}_{n∈ N} on [0, 1] such that each f_n is *R*-integrable on [0, 1], {f_n}_{n∈ N} converges pointwise on [0, 1] to f and f is not *R*-integrable on [0, 1].

(b) Show that the sequence $\{f_n\}_{n \in \mathbb{N}}$ where $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ is uniformly convergent 3 on $[0, \pi]$.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC7/2020

- 8. (a) Prove that a bounded real valued function f:[a, b] → R is Riemann integrable on [a, b] if and only if there exist a partition P of [a, b] such that U(P, f) L(P, f) < ε. Is this result true for any replacement of P? Is this result true for unbounded function? Justify.
 - (b) Let $f:[a, b] \to \mathbb{R}$ be bounded function. Suppose that there is a partition P of [a, b] such that L(P, f) = U(P, f). Show that f is a constant function. 2

5

5

- 9. (a) If a sequence of functions {f_n}_{n∈ℕ} converges uniformly on [a, b] to a function f and if c∈ [a, b] s.t. lim_{x→c} f_n(x) = a_n, n∈ N. Show that
 - (i) $\{a_n\}_{n \in \mathbb{N}}$ converges
 - (ii) $\lim_{x \to c} f(x)$ exists
 - (iii) $\lim_{x \to c} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to c} f_n(x)$.

Deduce further that if each f_n be continuous on [a, b], then the limit function f is continuous on [a, b].

_×__

(b) Give an example to show that the continuity of f(x) is not a necessary condition 2 for the existence of an antiderivative of f(x).