

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2021

CC4-CHEMISTRY

PHYSICAL CHEMISTRY

Full Marks: 40

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

		Answer any four questions	$10 \times 4 = 40$
1.	(a)	State the First Law of Thermodynamics and show how it leads to the concept of internal energy.	3
	(b)	Show that adiabatic P-V curves are steeper than isothermal curves.	3
	(c)	One mole of an ideal gas expands from 10 litres to 50 litres at 27°C in the following way:	4
		(i) Isothermally and reversibly	
		(ii) Against a constant pressure of 1 atmosphere	
		Show by calculation in which case more heat will be absorbed during expansion.	
2.	(a)	Draw the S-T diagram of Carnot engine and find out its efficiency.	3
	(b)	Calculate the efficiency of a reversible Carnot engine working between 100 K and 500 K. Calculate the maximum work obtained in joules if the engine absorbs 1 kJ of heat from source.	4
	(c)	State and explain Third Law of Thermodynamics.	3
3.	(a)	Derive Gibbs-Helmholtz equation:	4
		$[\partial(\Delta G/T)/\partial T]_{P} = -\Delta H/T^{2}$	
	(b)	Explain the significance of the Gibbs-Helmholtz equation.	2
	(c)	Calculate the enthalpy change for the process:	4
		$H_2O(1,-10^{\circ}C) \rightarrow H_2O(s,-10^{\circ}C)$	
		Given, C_p for water(liquid) = 75.4 JK ⁻¹ mol ⁻¹	
		C_p for ice(solid) = 37.2 JK ⁻¹ mol ⁻¹	
		Latent Heat of Fusion of ice at 0° C = $6.008 \text{ kJK}^{-1} \text{ mol}^{-1}$	

UG/CBCS/B.Sc./Hons./2nd Sem./Chemistry/CHEMCC4/2021

4. (a) What is Joule-Thomson Effect?

3 (b) Deduce the relationship: $\mu_{J,T} = -1/C_P (\partial H/\partial P)_T$ (c) What do you understand by inversion of temperature? Why do He and H₂ show 2+1heating instead of cooling? (d) Derive the Maxwell relation: $(\partial S/\partial P)_T = -(\partial V/\partial T)_P$ 2 5. (a) Derive the relation between the equilibrium constants K_P , K_C and K_X . Under what 2+1conditions, $K_P = K_C = K_X$. (where P, C, X stand for partial pressure, molar concentration and mole fraction). (b) Derive the van't Hoff equation in the form of: $\frac{d(InK_P)}{dT} = \frac{\Delta H^{\circ}}{RT^2}$. Integrate this 3+4equation and discuss the effect of temperature on K_P . 6. (a) State Le Chatelier's Principle. On the basis of Le Chatelier's Principle, discuss 2+(1+1)the effect of: (i) Temperature on Solubility of gases. (ii) Pressure on melting point of ice. (b) Explain the effect of temperature and pressure on the following equilibria: $(2\frac{1}{2}+2\frac{1}{2})$ (i) $N_2(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ $\Delta H = +180 \text{ kJ}$ (ii) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3 \quad \Delta H = -92 \text{ kJ}$ (c) Distinguish between ΔG and ΔG° . 1 1 7. (a) State Raoult's Law. 4 (b) Give the thermodynamic derivation of relative lowering of vapour pressure. (c) Establish from Thermodynamic consideration, $\Delta T_f = K_f$ m. 5 8. (a) What are abnormal solutions? 2 (b) Show that the van't Hoff factor i and degree of association α of a solute in a 3 solution are related in the given reaction: $nA \rightleftharpoons (A)n$. 2 (c) What is Reverse Osmosis? (d) A 5.13% of solution is isotonic with a 0.9% solution of an unknown non-volatile 3 solute. Calculate the molar mass of the solute.

2

2015