

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-II Examination, 2021

CHEMISTRY

PAPER-V

PHYSICAL CHEMISTRY

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

		Answer any four questions from the following	$15 \times 4 = 60$
1.	(a)	Derive the relationship between K_c , K_p and K_x for a general reaction.	4
	(b)	What are the conditions for: $K_p = K_c = K_x$.	1
	(c)	How are K_p and K_c related in the following case?	3
		$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$	
	(d)	Derive the relationships:	3+2
		$\frac{d \ln K_p}{dT} = \frac{\Delta H^{\circ}}{RT^2} \text{and} \frac{d \ln K_c}{dT} = \frac{\Delta U^{\circ}}{RT^2}$	
	(e)	How will you increase the yield of ammonia in Haber's process? Discuss it with the help of Le Chatelier's principle.	2
2.	(a)	What do you mean by Surface tension of liquids?	2
	(b)	Show that the Surface tension and Surface energy have the same dimension.	3
	(c)	Define coefficient of viscosity of liquids. What is its unit?	2+1
	(d)	How does coefficient of viscosity vary with temperature?	2
	(e)	Describe the experimental method for the determination of surface tension of a liquid.	4
	(f)	Why are liquid drops spherical?	1
3.	(a)	Define Osmotic Pressure.	2
	(b)	Write down the differences between osmosis and diffusion.	2
	(c)	How will you explain the value of osmotic pressure in three different aqueous solutions, if it contains 0.1 (M) NaCl, 0.1 (M) CH ₃ COOH and 0.1 (M) glucose?	2
	(d)	What do you mean by Vant's Hoff factor?	2
	(e)	Define molal depression constant.	2
	(f)	Derive an expression relating the freezing point depression of a solution with mole fraction of the dissolved solute thermodynamically.	5

B.Sc./Part-II/Hons./(1+1+1) System/CEMH-V/2021

 4. (a) What are azeotropes? (b) Is azeotrope a mixture or chemical compound? — Explain. (c) Discuss the conditions for ideal solution. (d) Show that in a Binary Ideal Solution if one constituent follow Raoult's Law then the other constituent will also follow Raoult's Law. (e) Explain why: Sodium chloride solution freezes at lower temperature than water 	2 3 3 4 3
 but boils at higher temperature than water. 5. (a) Derive the Nernst Distribution law and write down the limitations. (b) What do you mean by Relative Lowering of vapour pressure? Explain why it should be considered as a Colligative property? (c) Define Dipole moment. (d) The molecular dipole moment of Chlorobenzene is 1.69 D. Calculate the dipole moments of <i>o</i>-, <i>m</i>-, <i>p</i>-dichlorobenzene. 	4+2 3+1 2 3
 6. (a) Write down a short note on Standard Hydrogen Electrode (SHE). (b) Write down the advantage of Saturated Calomel Electrode (SCE) over Standard Hydrogen Electrode. (c) Prove the relation ΔH = nF[T(∂E/∂T)_P - E] where the terms have their usual meaning. (d) What is liquid junction potential? (e) Derive Nernst Equation relating the EMF of a cell with the concentration of the reactants and products of the reaction. (f) Calculate the potential of the following cell at 298 K. 	3 2 3 2 3 2 3 2
Zn Zn ²⁺ (<i>a</i> = 0.01) Cu ²⁺ (<i>a</i> = 0.001) Cu $E_{Zn^{2+}/Zn}^{0} = -0.762 \text{ V} \text{ and } E_{Cu^{2+}/Cu}^{0} = +0.337 \text{ V}$	
 7. (a) What is a buffer solution? What do you mean by the buffer capacity? Describe the mechanism of buffer solution. (b) Derive the Henderson's Equation. (c) Derive the pH expression of salt made from strong acid and weak base. (d) Calculate the pH of 10⁻⁸ M solution of HCl at 25° C. 	2+2+2 3 3 3
 8. (a) Explain the variation of specific conductance and equivalent conductance with dilution. (b) Define ionic mobility. Why do H⁺ ions have exceptionally high ionic mobility? (c) Discuss the principle underlying the conductometric titration between CH₃COOH vs NaOH. Draw the qualitative schematic titration curve. (d) What is Walden's Rule? 	3 2+2 3+2 3

-X-