

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-II Examination, 2021

MATHEMATICS

PAPER-VII

Full Marks: 50

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer *all* questions

 $5 \times 3 = 15$

 $5 \times 3 = 15$

- 1. If G be an infinite cyclic group generated by a, then prove that a and a^{-1} are the only generators of G.
- 2. Let *H* be a subgroup of the symmetric group S_n . Show that either every member of *H* is an even permutation or exactly half of them are even.
- 3. A ring *R* is called a Boolean ring if $a^2 = a$, $\forall a \in R$. Prove that (i) $\mathbb{Z}_2 \times \mathbb{Z}_2$ is a Boolean ring.
 - (ii) The characteristic of a Boolean ring is 2.

GROUP-B

Answer all questions

4. The matrix of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ relative to the ordered basis $\{(-1, 1, 1), (1, -1, 1), (1, 1, -1)\}$ of \mathbb{R}^3 is $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{bmatrix}$. Find the matrix of *T* relative to the ordered basis $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 .

- 5. Apply Gram-Schmidt process to obtain an orthonormal basis of the subspace of Euclidean space of \mathbb{R}^4 with standard inner product, spanned by the vectors (1, 1, 0, 1), (1, -2, 0, 0), (1, 0, -1, 2).
- 6. Find the dimension of the subspace $S \cap T$ of \mathbb{R}^4 where $S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\},$ $T = \{(x, y, z, w) \in \mathbb{R}^4 : 2x + y - z + w = 0\}$

GROUP-C

Answer *all* **questions** $10 \times 2 = 20$

- 7. (i) Show that the vector $\vec{a} \times (\vec{b} \times \vec{a})$ is coplanar with \vec{a} and \vec{b} . 1+2+3+4
 - (ii) Determine the constant a so that the vector

$$\vec{v} = (x+3y)\hat{i} + (y+2z)\hat{j} + (x+az)\hat{k}$$

is solenoidal.

- (iii) Find the maximum value of the directional derivative of $\varphi = x^2 y^2 + z^2$ at the point (1, 3, 2). Find also the direction in which it occurs.
- (iv) Find the curvature and torsion for the curve $x = a \cos t$, $y = a \sin t$, z = bt at any point *t*.
- 8. (i) Verify Stoke's theorem for the vector function $\mathbf{F} = (x^2 y^2)\hat{i} + 2x\hat{j}$ round the 5+5 rectangle bounded by the straight lines x=0, x=a, y=0, y=b.
 - (ii) Find the equations of the osculating plane, normal plane and rectifying plane to the twisted cubic x = 2t, $y = t^2$, $z = \frac{1}{3}t^3$ at t = 1.

—×—