

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2021

GE-MATHEMATICS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains MATHGE-I, MATHGE-II, MATHGE-III, MATHGE-IV & MATHGE-V. The candidates are required to answer any *one* from the *five* courses. Candidates should mention it clearly on the Answer Book.

MATHGE-I

Cal. Geo and DE.

GROUP-A

1. Answer *all* the questions from the following:

2×5=10

(a) Find the asymptotes parallel to coordinate axes of the curves $y = \tan^{-1} x$.

(b) Evaluate: $\lim_{x \to a} \left(2 - \frac{a}{x}\right)^{\tan \frac{ax}{2a}}$

(c) Solve:
$$x dy - y dx = \cos \frac{1}{x} dx$$

- (d) Evaluate: $\int_{0}^{1} \frac{x^{6}}{\sqrt{1-x^{2}}} dx$
- (e) Find the equation of a sphere whose great circle is $x^2 + y^2 + z^2 + 10y 4z = 8$, x + y + z = 3.

GROUP-B

Answer *all* the questions from the following $12 \times 3=36$

- 2. (a) Find the reduction formula for $\int (\log x)^n x^m dx$ and hence find the value of $\int (\log x)^2 x dx$.
 - (b) Find the volume of the solid obtained by revolution the region bounded by y = x 4 and $y = x^2 - 2x$ about the line y = 5.

(c) Solve:
$$\frac{dy}{dx} - \frac{\tan y}{1+x} = (1+x)e^x \sec y$$
 5

- 3. (a) Determine the point of inflection for $y = \sin^2 x$, $0 \le x \le 2\pi$.
 - (b) If $x^{\frac{2}{3}} + y^{\frac{2}{3}} = c^{\frac{2}{3}}$ is the envelope of the lines $\frac{x}{a} + \frac{y}{b} = 1$, where a, b are variable 4 parameter and c is a constant, then prove that $a^2 + b^2 = c^2$.
 - (c) A variable sphere passes through $(0, 0, \pm c)$ and cuts the lines $y = x \tan \alpha$, z = c5 and $y = -x \tan \alpha$, z = -c in points P and P'. If PP' = 2a (a is a constant), show that the centre of the sphere lies on the circle $x^2 + y^2 = (a^2 - c^2) \csc^2 2\alpha$, z = 0.

4. (a) Find the value of a and b if the
$$\lim_{x \to \infty} \frac{a \sin^2 x + b \log \cos x}{x^4} = -\frac{1}{2}.$$
 3

(b) Solve:
$$\frac{dy}{dx} + 2xy = x^2 + y^2$$
 4

(c) Reduce the canonical form $5x^2 - 20xy - 5y^2 - 16x + 8y - 7 = 0$. 5

GROUP-C

 $7 \times 2 = 14$ Answer all the questions from the following

5. (a) Find the 21st derivative of
$$y = \frac{x^3}{x^2 - 3x - 2}$$
.

(b) Trace the curve
$$x^2 y^2 = (a + y)^2 (a^2 - y^2)$$
. 4

6. (a) Solve:
$$(1 + y^2) dx = (\tan^{-1} y - x) dy$$
 3

(b) If $I_m = \frac{d^m}{dx^m}(x^m \log x)$, prove that $I_m = mI_{m-1} + (m-1)!$. Hence prove that 4 $I_m = \left[\log x + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{m}\right]m!.$

MATHGE-II

Algebra

GROUP-A

1.	Answer <i>all</i> the questions from the following:	2×5=10
(8	a) Find the value of $(-i)^{1/4}$.	2

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/2021

(b) Find the values of k for which the equation $x^4 + 4x^3 - 2x^2 - 12x + k = 0$ has four real distinct roots.	2
(c) Let <i>a</i> , <i>b</i> , <i>c</i> be real numbers. Show that	2
$(a+b-c)^{2} + (b+c-a)^{2} + (c+a-b)^{2} \ge ab+bc+ca$	
(d) Check whether the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 + x$, $\forall x \in \mathbb{R}$ is surjective or not.	2
(e) Find the eigenvalues and eigenvectors of the matrix $7I_7$.	2

GROUP-B

Answer *all* the questions from the following $12 \times 3=36$

- 2. (a) Let z_1 , z_2 be two complex numbers such that z_1/z_2 is real. Prove that the points 3 representing z_1 and z_2 in the complex plane are collinear with the origin.
 - (b) Let $z = \cos \theta + i \sin \theta$ and *m* be a positive integer. Show that

$$(1+z)^m + \left(1 + \frac{1}{z}\right)^m = 2^{m+1} \cos^m \frac{\theta}{2} \cos \frac{m\theta}{2}$$

(c) Show that
$$\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}$$
.

- 3. (a) Apply Descartes' Rule of signs to find the nature of the roots of the equation 3 $x^{6}-3x^{2}-2x+3=0$.
 - (b) If $ax \equiv ay \pmod{m}$ where *a* is prime to *m* then prove that $x \equiv y \pmod{m}$.
 - (c) Let α , β , γ be the roots of the equation $x^3 + 2x^2 3x + 1 = 0$. Find the equations 4+1 whose roots are $\alpha\beta \gamma^2$, $\beta\gamma \alpha^2$, $\gamma\alpha \beta^2$ and deduce the condition that the roots of the given equation may be in geometric progression.
- 4. (a) Prove that the relation $\rho = \{(a, b) : a \equiv b \pmod{3}; a, b \in \mathbb{Z}\}$ is an equivalence 3+4 relation on the set of integers \mathbb{Z} . Also, find the sets $A = \{a : (a, 1) \in \rho\}$, $B = \{a : (a, 2) \in \rho\}$ and $C = \{a : (a, 3) \in \rho\}$ where $a \in \mathbb{Z}$, show that $\mathbb{Z} = A \cup B \cup C$ and $A \cap B = B \cap C = C \cap A = \phi$.
 - (b) Reduce the following matrix:

0	0	2	2	0	
1	3	2	4	1	
2	6	2	6	2 6	
3	9	1	10	6	

into row reduced echelon form and hence find its rank.

2059

4 + 1

5

GROUP-C

Answer all the questions from the following	7×2=14
5. (a) Prove that $1! \cdot 3! \cdot 5! \cdots (2n-1)! > (n!)^n$.	3
(b) If x_0, x_1, \dots, x_{n-1} are the roots of $x^n - 1 = 0$, then prove that $(x_0 - x_1)(x_0 - x_2)\dots(x_0 - x_{n-1}) = n$.	4
6. (a) Use Cayley-Hamilton Theorem to find A^{2021} , where $A = \begin{bmatrix} 1 & 7 \\ 0 & 1 \end{bmatrix}$.	2
(b) Determine the conditions for which the system of equations	5
x + y + z = b	
2x + y + 3z = b + 1	
$5x + 2y + az = b^2$	
admits of (i) no solution, (ii) unique solution and (iii) many solutions.	
MATHGE-III	
Differential Equation and Vector Calculus	

GROUP-A

1. Answer *all* the questions from the following:

(a) Show that $\sin 3x$, $\cos 3x$ is not a linearly independent solution of y'' + 9y = 0.

(b) Solve the equation: $\frac{dx}{dt} = -wy$ and $\frac{dy}{dt} = wx$.

(c) Find the particular integral of
$$\frac{d^2y}{dx^2} + y = \cos x$$
.

(d) If
$$\mathbf{r} = 3t\mathbf{i} + 3t^2\mathbf{j} + 2t^3\mathbf{k}$$
, then find $\frac{d\mathbf{r}}{dt} \times \frac{d^2\mathbf{r}}{dt^2}$.

(e) Given $\vec{r} = a\cos t\,\hat{i} + a\sin t\,\hat{j} + bt\,\hat{k}$. Show that $\left[\frac{d\vec{r}}{dt}\frac{d^2\vec{r}}{dt^2}\frac{d^3\vec{r}}{dt^3}\right] = a^2b$.

GROUP-B

Answer *all* the questions from the following

2. (a) Solve, using the method of variation parameters, the following differential 6 equation:

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = \log x$$

2×5=10

12×3=36

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/2021

(b) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ along the curve $C : x^2 + y^2 = 1$, z = 2 in the positive direction from A(1, 0, 2) to B(0, 1, 2) where

$$\boldsymbol{F} = (\boldsymbol{y} + \boldsymbol{x}\boldsymbol{z}^2)\boldsymbol{i} + (\boldsymbol{z} - \boldsymbol{y})\boldsymbol{j} + (\boldsymbol{x}\boldsymbol{y} - \boldsymbol{z})\boldsymbol{k}$$

3. (a) Solve, using the method of undetermined coefficients, the equation

$$(D^2 - 3D)y = x + e^x \sin x , \quad \left(D \equiv \frac{d}{dx}\right)$$

(b) Evaluate $\left(\iint \vec{F} \cdot \hat{n} \right) ds$, where $\vec{F} = yz\hat{i} + x\hat{j} + z\hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = 4$ included in the first octant between z = 0 and z = 2.

4. (a) Solve the differential equation
$$\frac{d^2y}{dx^2} + a^2y = \sec ax$$
 with the symbolic operator *D*. 6

(b) If $\vec{F}(x, y, z) = r^n(\vec{\alpha} \times \vec{r})$, then prove that \vec{F} is solenoidal, where $\vec{\alpha}$ is a constant vector, $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $r = |\vec{r}|$.

GROUP-C

Answer *all* the questions from the following $7 \times 2 = 14$

- 5. Find the complete solution of the given differential equation $(D^{3}+1)y = e^{2x} \sin x + e^{\frac{x}{2}} \sin(\frac{\sqrt{3x}}{2})$ 7
- 6. What is an irrotational vector? Find the constants *a*, *b*, *c* so that the vector 7 $\vec{F} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$

is irrotational. Hence, find the potential function V.

MATHGE-IV

Group Theory

GROUP-A

- 1. Answer *all* the questions from the following:
 - (a) If $G = (\mathbb{R}, +)$ and $H = (\mathbb{Z}, +)$, then how many distinct left cosets of H in G are there?
 - (b) Let $H := \{a + bi : a, b \in \mathbb{R}, ab \ge 0\}$. Prove or disprove that H is a subgroup of \mathbb{C} of all complex numbers under addition.
 - (c) Find an isomorphism from the group of integers (ℤ, +) to the group of even integers (2ℤ, +).

2×5=10

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHGE2/2021

- (d) "Every abelian group is cyclic" Check whether the statement is true or false with proper justification.
- (e) Check whether the set of rational numbers \mathbb{Q} forms a group with respect to multiplication.

GROUP-B

	Answer all the questions from the following	12×3=36
2. (a)	Find the number of elements of order 5 in the group (\mathbb{Z}_{30} , +).	5
(b)	Give an example of a group G and it's subgroup H such that $[G:H] = 2$.	5
(c)	Let $(\mathbb{Z}, +)$ be the group of integers and $N = \{3n \mid n \in \mathbb{Z}\}$. Prove that N is a normal subgroup of \mathbb{Z} .	2
3.	Let G be a group and $g \in G$. Define a map $\varphi_g : G \to G$ by $\varphi_g(x) := gxg^{-1}$ for all $x \in G$. Show that φ_g is an isomorphism from G onto itself.	6+6
	Further, define $\mathcal{L}(G) := \{ \varphi_g : g \in G \}$. Show that $\mathcal{L}(G)$ forms a group under composition of functions.	
4. (a)	If G is a cyclic group with only one generator, prove that either $o(G) = 1$ or $o(G) = 2$.	4
(b)	Give an example of two subgroups H , K of a group which are not normal but HK is a subgroup.	4
(c)	Suppose a group G has a subgroup of order n . Show that the intersection of all subgroups of G of order n is a normal subgroup of G .	4
	GROUP-C	
	Answer all the questions from the following	7×2=14
5. (a)	Prove that a cyclic group G of order n is isomorphic to the multiplicative group consisting of all n^{th} roots of unity.	5
(b)	Show that for any group $G, G/\{e\} \cong G$.	2

- 6. (a) Let N be a normal subgroup of a group G. If N is cyclic, prove that every subgroup of N is also normal in G.
 - (b) Write down the cyclic decomposition of the following permutation as a product 3 of disjoint cycles

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 6 & 1 & 3 & 2 & 8 & 7 \end{pmatrix}$$

MATHGE-V

Numerical Methods

GROUP-A

1. Answer *all* the questions from the following:

- (a) Given that $u = \frac{5xy^2}{z^3}$ find the relative error at x = y = z = 1 when the errors in each of x, y, z is 0.001.
- (b) Write the sufficient condition for convergence of Gauss-Seidel iteration method.
- (c) The equation $x^2 + ax + b = 0$ has two real roots α and β . Show that $x_{k+1} = -(ax_k + b)/x_k$ is convergent near $x = \alpha$ if $|\alpha| > |\beta|$.
- (d) Calculate $\sqrt{25.11} \sqrt{25.1001}$, correct up to three significant figures.
- (e) Show that $\Delta^n[ke^{ax}] = k(e^{ah} 1)^n e^{ax}$.

GROUP-B

12×3=36 Answer all the questions from the following

2. (a) Find the polynomial of degree three relevant to the following data by Lagrange's 6 formula:

x	- 1	0	1	2
f(x)	1	1	1	- 3

(b) Evaluate $\int_{2}^{3} \frac{dx}{1+2x}$ by Trapezoidal Rule taking n = 10 and compare the result with the evact value of the state of t 6

the exact value of the integration.

- 3. (a) Show that the Bisection method converges linearly.
 - (b) Determine a, b and c such that the formula

$$\int_{0}^{h} f(x) dx = h \left[af(0) + bf\left(\frac{h}{3}\right) + cf(h) \right]$$

is exact for polynomial of as high order as possible and determine the order of truncation error.

- 4. (a) Use Picard's method to solve the differential equation $\frac{dy}{dx} = x^2 + \frac{y}{2}$ at x = 0.5, 6 correct to two decimal places, given that y = 1 when x = 0.
 - (b) Solve the following system of linear equations by Gauss-Seidel method:

$$20x + 5y - 2z = 14$$
$$3x + 10y + z = 17$$
$$x - 4y + 10z = 23$$

 $2 \times 5 = 10$

6 6

GROUP-C

Answer *all* the questions from the following $7 \times 2 = 14$

5. Using modified Euler's method, find y(4.4) by taking h = 0.2, from the 7 following differential equation:

$$5x\frac{dy}{dx} + y^2 - 2 = 0 , \quad y(4) = 1$$

6. If the third order differences of a function f(x) are constants and

$$\int_{-1}^{1} f(x) \, dx = k \left[f(0) + f\left(\frac{1}{\sqrt{2}}\right) + f\left(-\frac{1}{\sqrt{2}}\right) \right],$$

×

then find the value of k.