

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2021

CC9-MATHEMATICS

RING THEORY AND LINEAR ALGEBRA-I

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer *all* the following questions $2 \times 5 = 10$

- 1. (a) Prove that in a field $F, a^2 = b^2$ implies either a = b or a = -b.
 - (b) $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y + z, y + z, z) is a linear mapping. Show that T is non-singular.
 - (c) Find the units in the ring of $(\mathbb{Z}_8, +, \cdot)$.
 - (d) Prove that the set $S = \{(a, 3b) : a, b \in \mathbb{Z}\}$ is a subring of the ring $\mathbb{Z} \times \mathbb{Z}$.
 - (e) Find the co-ordinate vector of (0, 3, 1) in \mathbb{R}^3 relative to the basis $\{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$.

2. (a) Show that
$$H = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C} \right\}$$
 is a subring of $M_2(\mathbb{C})$. Is H a field? 4

(b) Let
$$R = \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} : a, b \in \mathbb{Z} \right\}$$
 be the ring and $\varphi : R \to \mathbb{Z}$ is defined by $\varphi \left(\begin{bmatrix} a & b \\ b & a \end{bmatrix} \right) = a - b$. Show that φ is a ring homomorphism and find ker φ .

- (c) Check whether the ring C[0,1] of real valued continuous functions on [0, 1] is an 2 integral domain or not. Justify your answer.
- 3. (a) Extend the set $\{(1, 0, 1, 0), (0, 1, 1, 1)\}$ to obtain a basis of the vector space \mathbb{R}^4 .

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC9/2021

- (b) Find the dimension of the subspace $S \cap T$ of \mathbb{R}^4 , where $S = \{(x, y, z, w) \in \mathbb{R}^4\}$ 4 x + y + z + w = 0 and $T = \{(x, y, z, w) \in \mathbb{R}^4 : x + 2y - z + w = 0\}$.
- (c) Prove that $\mathbb{Z}/2\mathbb{Z}$ is isomorphic to $5\mathbb{Z}/10\mathbb{Z}$.
- 4. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by T(x, y, z) = (2x + y z, y + 4z, x y + 3z) for all 5 $(x, y, z) \in \mathbb{R}^3$. Find the matrix of T and the inverse of T relative to the ordered basis $\{(1, 0, 1), (1, 1, 0), (0, 1, 1)\}$ of \mathbb{R}^3 .
 - (b) Let $\varphi \colon \mathbb{Z} \to \mathbb{Z}_5$ be defined by $\varphi(x) =$ the remainder of x (mod 5) for each $x \in \mathbb{Z}$. 3 Show that φ is an onto homomorphism and find $\mathbb{Z}/\ker \varphi$.
 - (c) Find all the ring homomorphisms from \mathbb{Z}_{15} to \mathbb{Z}_3 .
 - **GROUP-C** $10 \times 1 = 10$

5. (a) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a map defined by

T(a, b, c, d) = (a - b + c + d, a + 2c - d, a + b + 3c - 3d)

- Show that *T* is a linear transformation. (i)
- (ii) Find the basis and dimension of range space and null space of T.
- (b) Let B be an ordered basis for a 2-dimensional vector space V over a field F and T a 4 linear mapping on V. If the matrix representation of T with respect to B is $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ then show that $T^2 - (a+d)T + (ad-bc)I = 0$.

GROUP-D
$$5 \times 2 = 10$$

6. Let $(R, +, \cdot)$ be a ring. Define the operations \oplus and \odot on R by $r \oplus s = r + s + 1$ and $r \odot s = r \cdot s + r + s$

Show that (i) (R, \oplus, \odot) is a ring. (ii) (R, \oplus, \odot) is isomorphic to the ring $(R, +, \cdot)$.

7. (a) Show that the set $I = \{a + bi\sqrt{5} \mid a, b \in \mathbb{Z}, a - b \text{ is even}\}$ is an ideal of the ring 3 $\mathbb{Z}[i\sqrt{5}].$

X

(b) Let R be a commutative ring with unity of prime characterization p. Show that the 2 map $f: R \to R$ given by $f(a) = a^p$ for all $a \in R$ is a ring homomorphism.

5

2+4

2

2