

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2021

SEC2 (P2)-MATHEMATICS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains SEC2A and SEC2B. The candidates are required to answer any *one* from *two* papers. Candidates should mention it clearly on the Answer Book.

SEC2A

GRAPH THEORY

GROUP-A

Answer all questions

 $2 \times 5 = 10$

- 1. (a) Find the smallest positive integer n such that the complete graph K_n has at least 500 edges.
 - (b) Find the incidence matrix of the graph K_6 .
 - (c) Does there exist a tree of order 11 such that the sum of the degrees of the vertices is 22? Justify.
 - (d) Find the adjacency matrix of the complete bipartite graph $K_{3,4}$.
 - (e) Find the number of spanning trees of K_5 .

		GROUP-B	$10 \times 3 = 30$
2.	(a)	Let G be a disconnected graph of order $2n$ with two components G_1 and G_2 . If order of G_1 is $(n-1)$, find the minimum possible size of G.	3
	(b)	Find <i>n</i> , for which the complete graph K_n is (i) Semi-Eulerian (ii) Eulerian.	4
	(c)	Find the rank of the adjacency matrix of the complete bipartite graph $K_{3,3}$.	3
3.	(a)	Prove that the order of a self-complementary graph must be of the form $4k$ or $4k+1$, k being a positive integer.	3
	(b)	Let G be a simple graph connected graph of order $n \ge 3$ and size m. Prove that G	5
		is Hamiltonian if $m \ge \frac{1}{2}(n-1)(n-2)+2$.	
	(c)	Examine, whether a graph having no odd degree vertex is a tree or not?	2

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHSEC2/2021

4.	(a)	Let T_1 be a tree of order n and size 10 and T_2 be another tree of order $4n-1$. Find the size of T_2 .	3
	(b)	Prove that the complement of a disconnected graph is connected.	4
	(c)	Give an example of two no isomorphic graphs with same degree sequence.	3

GROUP-C $5 \times 2 = 10$

5

 $5 \times 2 = 10$

5

2

3

5. (a) Find a minimal spanning tree of the graph shown below.

- (b) (i) Let G be a 3-regular graph of order $n \ge 8$. Show that the complement of G is Hamiltonian. n^2 3
 - (ii) Show that the number of edges of a bipartite graph of order *n* is at most $\frac{n^2}{4}$.

GROUP-D

6. (a) Find the *adjacency matrix* of the graph with respect to the listing v_1, v_2, v_3, v_4 of the vertices. Hence, find the number of distinct walks of length 2 from v_2 to v_3 and write these walks.

- (b) (i) Construct a simple graph G with 6 vertices such that G has exactly 5 edges but G is not a tree.
 - (ii) Prove that the complete graph K_n can be expressed as the union of k bipartite graph if and only if $n \le 2^k$.

2

SEC2B

OPERATING SYSTEM : LINUX

GROUP-A

1. Answer *all* questions from the following: $2 \times 5 = 10$

(a) Write any two features of Linux OS.

- (b) What is LILO?
- (c) What is swap space?
- (d) What is active Directory and how it works?
- (e) Differentiate between root user and normal user.

GROUP-B

$10 \times 3 = 30$ Answer all questions from the following

- 2. Write about the following Linux commands with example: cd, cp, pwd, mkdir, rmdir, md, cat, ls
- 3. Explain the architecture of Linux OS.
- 4. Explain the concept of shell and kernel? How to view contents of a file in LINUX system?

GROUP-C

- Answer *all* questions from the following: 5.
 - (a) Define vi Editor and explain its modes. Brief about the commands used in the vi Editor.
 - (b) Short note on booting process of the Linux OS.

GROUP-D

6. Answer *all* questions from the following:

- (a) Explain file system structure of Linux. Explain the pipe feature in Unix with examples.
- (b) Explain the Key features of Linux file system.

_×__

 $5 \times 2 = 10$

 $5 \times 2 = 10$