

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2021

# **DSE4-MATHEMATICS**

Full Marks: 60

## ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

## The question paper contains DSE4A and DSE4B. Candidates are required to answer any *one* from the *two* courses and they should mention it clearly on the Answer Book.

## DSE4A

## **DIFFERENTIAL GEOMETRY**

### **GROUP-A**

1. Answer *all* questions:

(a) If r = r(s) be the position vector of a point *P* with arc length *s* as the parameter of the curve then show that  $\tau = \frac{[r', r'', r''']}{|r''|^2}$ .

- (b) Find the torsion for the curve  $r = (u^3 + 3u, 3u^2, u^3 3u)$ .
- (c) Show that a necessary and sufficient condition for a curve to be straight line is  $\kappa = 0$ .
- (d) Find the envelope of the surface  $3xt^2 3yt + z = t^3$ .
- (e) Find the lines of curvature on a plane.

### **GROUP-B**

2. Answer *all* questions:

- (a) (i) Find the intrinsic equation of the curve  $r = (ae^u \cos u, ae^u \sin u, be^u)$ . 5+5
  - (ii) Show that the surface  $e^z \cos x = \cos y$ .
- (b) (i) Show that the first fundamental form is invariant under a transformation of 5+5 parameters.
  - (ii) Find the edge of regression of the family of planes  $x \sin \theta y \cos \theta + z = a \theta$ , where  $\theta$  is a parameter.

1

 $2 \times 5 = 10$ 

10×3=30

### UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE4/2021

- (c) (i) Discuss the nature of geodesics on a sphere.
  - (ii) Show that the curves u + v = constant are geodesics on a surface with metric  $ds^{2} = (1 + u^{2}) du^{2} - 2uv du dv + (1 + v^{2}) dv^{2}$ .

#### **GROUP-C**

- 3. Answer *all* questions:
  - (a) Show that the tangent to the locus of the centre of oscillating sphere passes through the 5 + 5centre of the osculating circle.
  - (b) If  $R_s$  is the radius of spherical curvature, show that  $R_s = \frac{|\hat{t} \times \hat{t}''|}{\kappa^2 \tau}$ .

#### **GROUP-D**

Answer *all* questions: 4.

- (a) If L, M, N vanish at all points of a surface then the surface is plane, where L, M, N are 5 + 5second fundamental coefficients.
- (b) State and prove the Serret-Frenet formula in matrix form  $\hat{e}'_i = \sum_{j=1}^{3} a_{ij} \hat{e}_j$ , where the matrix  $A = [a_{ii}]$  is Cartan matrix and  $\hat{e}_1 \equiv \hat{t}$ ,  $\hat{e}_2 \equiv \hat{n}$  and  $\hat{e}_3 \equiv \hat{b}$ .

#### **DSE4B**

#### **THEORY OF EQUATION**

#### **GROUP-A**

1. Answer *all* the questions:

(a) If one of the roots of the equation  $x^3 + px^2 + qx + r = 0$  equals the sum of the other two, then proved that

$$p^3 + 8r = 4pq$$

(b) Show that the equation of the form

$$\frac{x^4}{4!} + \frac{x^3}{3!} + \frac{x^2}{2!} + x + 1 = 0$$

can not have a multiple root.

- (c) If  $\alpha$ ,  $\beta$ ,  $\gamma$  be the roots of the equation  $x^3 + px + q = 0$ , show that  $\sum \alpha^5 = 5pq$ .
- (d) Show that  $x^2 x + 1$  is a factor of  $x^{20} + x^{10} + 1$ .
- (e) If  $\alpha$  be an imaginary root of  $x^{11} 1 = 0$ , prove that  $(\alpha + 1)(\alpha^2 + 1)...(\alpha^{10} + 1) = 1$ .

 $2 \times 5 = 10$ 

 $5 \times 2 = 10$ 

 $5 \times 2 = 10$ 

#### **GROUP-B**

### Answer *all* the questions $10 \times 3=30$

- 2. (a) Find the range of values of *r* for which the equation  $3x^4 + 8x^3 bx^2 24x + r = 0$  has 4+3+3 four real and unequal roots.
  - (b) Find the condition that the equation  $x^4 + px^3 + qx^2 + rx + s = 0$  should have its roots  $\alpha, \beta, \gamma, \delta$  connected by the relation  $\alpha + \beta = 0$ .
  - (c) Solve the equation  $x^3 x^2 + 3x 27 = 0$  having three distinct roots of equal moduli.
- 3. (a) Prove that the roots of the equation  $x^3 6x 4 = 0$  are -2,  $2\sqrt{2}\cos\frac{\pi}{12}$ ,  $2\sqrt{2}\cos\frac{7\pi}{12}$ . 4+4+2
  - (b) Show that the special roots of the equation  $x^{10} 1 = 0$  are the non-real roots of the equation  $x^5 + 1 = 0$ .
  - (c) Is the equation  $x^4 x^3 + x^2 + x 1 = 0$  a reciprocal equation? Justify your answer.
- 4. (a) Solve by Ferrari's method of the equation

$$2x^4 + 5x^3 - 8x^2 - 17x - 6 = 0$$

- (b) Prove that  $(x^3 + 1)(x^2 x + 1) = a(x^5 + 1)$  is a reciprocal equation if  $a \neq 1$  and solve it when a = 2.
- (c) By Rolle's theorem, find the number and positions of the real roots of the equation  $x^3 12x + 7 = 0$ .

#### **GROUP-C**

- 5. Answer *all* the questions:
  - (a) The sum of two roots of the equation

$$x^4 - 8x^3 + 19x^2 + 4\lambda x + 2 = 0$$

is equal to the sum of the other two. Find  $\lambda$  and solve the equation.

(b) Use Sturm's theorem to show that the equation  $x^4 - 3x^3 - 2x^2 + 7x + 3 = 0$  has one root between -2 and -1, one root between -1 and 0 and two roots between 2 and 3.

### **GROUP-D**

6. (a) If  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  be the roots of the biquadratic  $x^4 + px^3 + qx^2 + rx + s = 0$ , then find the equation whose roots are

$$(\beta\gamma + \alpha\delta), (\gamma\alpha + \beta\delta), (\alpha\beta + \gamma\delta)$$

Hence find the value of

$$(\alpha + \beta) (\alpha + \gamma) (\alpha + \delta) (\beta + \gamma) (\beta + \delta) (\gamma + \delta)$$

(b) Find the equation of the squared differences of the roots of the cubic  $x^3 + x^2 - x = 1$ . Hence show that two roots of this equation are equal.

-×-

4 + 4 + 2

5+5