

'समानों मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2021

GE2-P1-PHYSICS

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains GE-3A and GE-3B. The candidates are required to answer any *one* from *two* courses. Candidates should mention it clearly on the Answer Book.

GE-3A

MECHANICS

GROUP-A

1.	Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$
	(a) What is axial vector? Give an example.	1
	(b) When the resultant sum of two vectors is zero?	1
	(c) What do you mean by impulse of a force?	1
	(d) Give two examples of conservative force.	1
	(e) What is the radius of gyration?	1
	(f) What is the condition of a simple harmonic motion?	1
	(g) Find the dimension of gravitational constant.	1
	(h) State Kepler's third law of planetary motion.	1

GROUP-B

	Answer any <i>three</i> que	stions from the following	$5 \times 3 = 15$
2.	Define gravitational potential energy masses.	and find its expression for a system of	1+4
3. (a)	Prove that, the areal velocity of a partic	le under central force is constant.	3
(b)	Show that, the angular momentum of a	particle under central force is constant.	2
4. (a)	Define the following terms related to di	fferential equation:	2
	(i) Ordinary	(ii) homogeneous	
(b)	Solve the differential equation		3
	$\frac{dy}{dx} + \frac{y}{x} = x^3 - 3$		

5. (a) Show that Poisson's ratio of an elastic material lies between $-\frac{1}{2}$ and $+\frac{1}{2}$.

3

3

(b) Prove that for a homogeneous medium

$$Y = 3K(1 - 2\sigma)$$

where the symbols have their usual meanings.

- 6. (a) Given $\vec{A} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{B} = 2\hat{i} \hat{j} + 2\hat{k}$. Find out the unit vector 2 perpendicular to both \vec{A} and \vec{B} .
 - (b) Prove that,

$$\frac{d}{dt}(\phi\vec{A}) = \phi \frac{d\vec{A}}{dt} + \frac{d\phi}{dt}\vec{A},$$

where ϕ is a differentiable scalar function and \vec{A} is a differentiable vector.

GROUP-C

		Answer any two questions from the following	$10 \times 2 = 20$
7. ((a)	Establish the differential equation for a simple harmonic motion and find out it's solution.	2+4
((b)	Derive the expression of potential energy for a simple harmonic motion and show that total energy for SHM is constant.	2+2
8. ((a)	How fast would rocket have to go relative to an observer for its length to be contracted to 98% of its length at rest?	2
((b)	Establish the relativistic equation between the total energy and the momentum of a moving body.	4
((c)	Starting from the relation of variation of mass with velocity establish the equivalence relation of mass and energy.	4
9. ((a)	Define the bulk modulus and the compressibility.	1+1
((b)	What is the difference between angle of twist and angle of shear?	2
((c)	Calculate the work done in twisting a wire.	3
((d)	Draw and explain stress-strain diagram in connection with the elastic behaviour of a wire.	3
10.((a)	Establish the relation between the torque and the angular momentum.	2
((b)	If earth suddenly contracts to half of its present radius. What would be the length of a day?	2
((c)	A circular disc of mass m and radius r is set rolling on a table. If ω be the angular	3
		velocity. Show that total energy of the disc is given by $E = \frac{3}{4}m\omega^2 r^2$.	
((d)	A sphere of mass 50 g and radius 2 cm rolls with a velocity 5 cm/s. Find out the	3

linear and rotational kinetic energy of the sphere.

GE-3B

THERMAL PHYSICS AND STATISTICAL MECHANICS

GROUP-A

1.		Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$
	(a)	What is the unit of Entropy in S.I. system?	1
	(b)	What is the physical significance of the enthalpy?	1
	(c)	Write down the expressions of the r.m.s velocity and the most probable velocity of ideal gas particles?	1
	(d)	If in a three dimensional space electron density is increased eight times, then how much the Fermi energy is increased?	1
	(e)	What is the rotational degree of freedom for a diatomic gas molecule?	1
	(f)	What is the value of the chemical potential of a photon gas?	1
	(g)	What is the spin of a photon?	1
	(h)	What is a throttling process?	1

GROUP-B

	Answer any three questions from the following	$5 \times 3 = 15$
2. (a)	Show that for an ideal gas $C_P - C_V = R$.	3
(b)	Find out the expression of work done in an adiabatic process for an ideal gas.	2
3. (a)	Define the Helmholtz free energy and the Gibbs free energy.	3
(b)	Establish the Clausius-Clapeyron equation from the Maxwell's relations.	2
4. (a)	What is the mean free path?	1
(b)	Find out the expression of average velocity of an ideal gas molecule.	4
5.	Establish the relation $PV = \frac{2}{3}E$ for an electron gas at $T = 0$ K.	5
6.	Deduce Wien's displacement law from Planck's law.	5

GROUP-C

		Answer any two questions from the following	$10 \times 2 = 20$
7.	(a)	What is a heat engine?	2
	(b)	Describe, in brief, its working principle.	2
	(c)	Show that the thermal efficiency of a Carnot's engine operating between a source	6
		at temperature T_1 and a sink at temperature T_2 is $\eta = 1 - \frac{T_2}{T_1}$.	

UG/CBCS/B.Sc./Hons./3rd Sem./Physics/PHYSGE3/2021

8.	(a)	State the Maxwell's Velocity distribution law and draw Velocity distribution curve.	2+1
	(b)	Make a comparative discussion on r.m.s average and most probable velocities of an ideal gas molecules.	3
	(c)	Prove that $\gamma = 1 + \frac{2}{f}$ for a mechanical system. (where $\gamma = C_P / C_V$).	4
9.	(a)	Define a perfect black body, give one example.	1+1
	(b)	Use Kirchhoff's law to show that a perfect emitter is also a perfect absorber.	2
	(c)	Draw the energy distribution diagram of a perfect black body at two different temperatures.	2
	(d)	Suppose the temperature of a body is decreased from 40°C to 30°C in 10 minutes. Let the temperature of the surrounding be 15°C. What will be the temperature of the body after 5 minutes more?	4
10).(a)	Define phase space.	1
	(b)	Explain the concept of microstates with example.	2
	(c)	Define the Fermi temperature. If the Fermi velocity of a conduction electron is 7×10^5 m/s, then find out the Fermi temperature.	1+2
	(d)	In a two-dimensional electron gas, show that the number of electron per unit area is	4

____X_____

$$n = \frac{4\pi m k_{\rm B}T}{h^2} \ln(1 + e^{E_{\rm F}/k_{\rm B}T})$$

3137