

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 5th Semester Examination, 2021

CC11-MATHEMATICS

GROUP THEORY-II

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1.	Answer any <i>four</i> questions from the following:	$3 \times 4 = 12$
((a) Find the number of elements of order 7 in $\mathbb{Z}_4 \times \mathbb{Z}_7$.	3
((b) Examine if direct product of two cyclic group is cyclic.	3
((c) Examine if every group of order p^n $(n \ge 1)$ is normal where p is any prime.	3
((d) Write class equation of S_3 .	3
((e) Find the number of Sylow 2-subgroups of S_4 and A_4 .	3
	(f) If $f: G \to G$ defined by $f(x) = x^2$ for all $x \in G$ is an automorphism does it imply that G is commutative?	3

GROUP-B

	Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
2.	Find all groups of order 22.	6
3.	Let G be a finite group and $a \in G$. Prove that $[G; C(a)] = Cl(a) $, where $C(a)$ is the centralizer of a and $Cl(a)$ is the conjugacy class of a.	6
4.	Prove or disprove: A_5 is a simple group.	6
5.	Show that any group of order pq where p , q are primes, $p > q$ and q does not divide $p-1$ is cyclic.	6
6.	Show that every group of order 14 contains 6 elements of order 7.	6

UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHCC11/2021

7. Prove that direct product of two finite cyclic groups is cyclic if and only if orders of the cyclic groups are relatively prime.

6

GROUP-C

Answer any two questions from the following	$12 \times 2 = 24$
8. (a) State and prove Cauchy's theorem.	2+6
(b) Find smallest <i>n</i> such that the Klein's four group is isomorphic to a subgroup of S_n .	4
9. (a) Let G be an infinite cyclic group. Prove that $Aut(G)$ is isomorphic to \mathbb{Z}_2 .	6
(b) Find Aut(\mathbb{Q}), where \mathbb{Q} is the group of rational numbers.	6
10.(a) Let G be a group and H , K be two subgroups of G . If G is an internal direct product of H and K , then prove that	6
(i) $G \cong H \times K$ (ii) $G/H \cong K$ and (iii) $G/K \cong H$	
(b) Let <i>H</i> and <i>K</i> be any two Sylow <i>p</i> -subgroups of a finite group <i>G</i> . Prove that $H = x K x^{-1}$ for some $x \in G$.	6
11.(a) Let $f: G \to G$ be a homomorphism. Suppose f commutes with every inner automorphism of G . Show that	8
(i) $K = \{x \in G ; f^2(x) = f(x)\}$ is a normal subgroup of G	
(ii) G/K is abelian.	
(b) Show that characteristic subgroup of a group is normal.	4

____×_____