

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 5th Semester Examination, 2021

CC12-MATHEMATICS

NUMERICAL METHODS

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

- 1. Answer any *five* questions from the following:
 - (a) Prove that $\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\}$.
 - (b) ∇ and *E* are backward and shift operator respectively. Prove that $E = \frac{1}{1 \nabla}$.
 - (c) Give the geometrical interpretation of Newton-Raphson method.
 - (d) How many digits are to be taken in computing $\sqrt{20}$ so that the error does not exceed 0.0001%?
 - (e) Find the number of significant figures in the approximate number 0.4785 gives its relative error as 0.1×10^{-2} .
 - (f) Prove that $\nabla^n y_k = \Delta^n y_{k-n}$.
 - (g) If π is approximated by 3.14, find the relative error.
 - (h) Why polynomials are used for approximating in interpolation.

GROUP-B

Answer any *three* questions from the following

- $5 \times 3 = 15$
- 2. Explain Gauss-Seidel iterative method for solving a system of linear equations. State sufficient conditions for the convergence of the process.
- 3. If Δ^m denotes the *m*-th order finite forward difference operator, show that

$$\Delta^{m}\left(\frac{1}{x}\right) = \frac{(-1)^{m} m! h^{m}}{x(x+h)(x+2h)\dots(x+mh)}$$

where h is the step length.

4. (a) Solve $\sin x = 5x - 2$ by the Fixed-Point iteration method. 3

(b) What are the advantages and disadvantages for Regula-Falsi method?

2

- 5. Evaluate $\int_{0}^{1} \cos x \, dx$, correct upto three significant figure, considering ten equal intervals by composite Simpson's $\frac{1}{3}$ rule.
- 6. Use Runge-Kutta method of order four to approximate y when x = 1.1. Given that $\frac{dy}{dx} = 3x + y^2$, y(1) = 1.2

GROUP-C

Answer any *two* questions from the following $10 \times 2 = 20$

7. (a) Use Power method to determine the dominant eigenvalue and corresponding 5 eigenvector of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

(b) Deduce the iterative procedure

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

for evaluating \sqrt{a} using Newton-Raphson method.

- 8. (a) Find the number of multiplications and divisions for solving a system of *n* linear 5 equations having *n* unknowns using Gauss-elimination method.
 - (b) Establish general quadrature formula from Newton's forward difference 5 interpolating polynomial. Hence deduce Trapezoidal rule.

9. (a) Find the least degree polynomial which takes the values

x	0	2	3	4	7
f(x)	4	26	58	112	466

Hence find f(5).

- (b) Deduce normal equation for fitting a straight line using least square approximation 5 method.
- 10. What are the partial pivoting and complete pivoting in Gauss-elimination method? 2+6+2
 Discuss Gauss-elimination method with complete pivoting for solving a system of *n* linear equations with *n* unknowns. State the condition of convergence of Gauss-Seidel iterative method.

×-

5

5