

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 2nd Semester Examination, 2022

CC4-CHEMISTRY

PHYSICAL CHEMISTRY

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. All symbols are of usual significance.

		Answer any <i>four</i> questions from the following	$10 \times 4 = 40$
1.	(a)	State and explain the first law of thermodynamics.	$2\frac{1}{2}$
	(b)	Show that in a reversible adiabatic expansion $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$. Symbols carry their usual meaning.	$2\frac{1}{2}$
	(c)	Adiabatic curves are steeper than the isothermal curves. Explain in detail.	$2\frac{1}{2}$
	(d)	Six moles of an ideal gas expand isothermally and reversibly from a volume of 1 dm^3 to a volume of 10 dm^3 at 27° C. What is the maximum work done?	$2\frac{1}{2}$
2.	(a)	Prove thermodynamically that for any substance	3+1
		$C_P - C_V = \left[P + \left(\frac{\partial U}{\partial V} \right)_T \right] \left(\frac{\partial V}{\partial T} \right)_P$	
		Simplify this equation for an ideal gas.	
	(b)	Calculate the free energy change in the freezing of 18 g of water at 263.15 K, given that the vapour pressure of water and ice at 263.15 K are 0.287 Pa and 0.260 Pa respectively.	3
	(c)	What will happen if a gas that obeys the equation $P(\overline{V} - b) = RT$ undergoes	3
		Joule-Thomson expansion, given $\mu_{J.T.} = \frac{1}{C_P} \left[T \left(\frac{\partial \overline{V}}{\partial T} \right)_P - \overline{V} \right].$	
3.	(a)	Show that $dG = -S dT + V dP$ and $dU = T dS - P dV$, symbols have their usual meaning.	4
	(b)	Prove that Joule-Thomson expansion is an iso-enthalpic process.	3
	(c)	Define thermodynamic functions. Discuss with suitable examples.	3

UG/CBCS/B.Sc./Hons./2nd Sem./Chemistry/CHEMCC4/2022

4.	(a)	Discuss the expression of Clausius inequality.	3
	(b)	If ΔS is negative for a process, can this process be spontaneous? Explain clearly.	2
	(c)	What is meant by equilibrium constant? What are its characteristics?	$1\frac{1}{2}+1\frac{1}{2}$
	(d)	Benzoic acid in benzene shows less osmotic pressure than expected — Explain.	2 2
5.	(a)	State Henry's law and explain it. Show that volume of a gas dissolved in a given volume of a solvent is independent of the pressures of the gas.	$2\frac{1}{2}+2$
	(b)	What is meant by ideal solution? Why does a solution deviate from ideal behaviour?	1+2
	(c)	Explain the depression of freezing point with the help of vapour pressure- temperature curve.	$2\frac{1}{2}$
6.	(a)	Derive the relation between K_c and K_x .	2
	(b)	The value of equilibrium constant of a reaction is dependent on the stoichiometric equation by which it is expressed — Justify or criticize.	2
	(c)	The value of ΔG° for the reaction $N_2O_4(g) \rightleftharpoons NO_2(g)$ is 4.61 kJ. Calculate the value of K_p and K_c for this reaction.	3
	(d)	Distinguish between ΔG and ΔG° .	2
	(e)	Why NH ₃ is preferably synthesized at low temperature and high pressure?	1

__×___