

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 4th Semester Examination, 2022

CC9-MATHEMATICS

RING THEORY AND LINEAR ALGEBRA-I

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

	Answer any <i>four</i> questions from the following	3×4 = 12
1.	Find a basis and dimension of the subspace W of \mathbb{R}^3 , where $W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$.	3
2.	Let R be a finite ring with n elements and S be a subring of R containing m elements. Prove that m is a divisor of n .	3
3.	Consider the ring $\mathbb{Z} \times \mathbb{Z}$ under component-wise addition and multiplication. Show that the set $S = \{(a, 0) : a \in \mathbb{Z}\}$ is a subring of $\mathbb{Z} \times \mathbb{Z}$ having unity different from that of $\mathbb{Z} \times \mathbb{Z}$.	3
4.	Prove that the set $S = \{(1, 0, 1), (0, 1, 1), (1, 1, 0)\}$ is a basis of \mathbb{R}^3 .	3
5.	Let D be an integral domain and $a, b \in D$. If $a^5 = b^5$ and $a^8 = b^8$, then prove that $a = b$.	3
6.	Is the ring $2\mathbb{Z}$ isomorphic to the ring $5\mathbb{Z}$? — Justify.	3

GROUP-B

Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
---	-------------------

7. (a)	Determine	k, so	that	the	set	$S = \{(k, 1, 1), $	(1, <i>k</i> ,	1), (1,	(1, k)	is	linearly	3
	independent	in \mathbb{R}^3 .										

(b) If *T* is linear, then ker $T = \{\theta\}$ iff *T* is injective.

3

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC9/2022

8. (a)	Let T be a linear mapping on the real vector space P_4 defined by,	3				
	$T(p(x)) = x \frac{d}{dx}(p(x)), p(x) \in P_4$. Determine the matrix of T relative to the					
	standard basis of P_4 .					
(b)	Find the dimension of the subspace S of \mathbb{R}^3 defined by, $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y = z, 2x + 3z = y\}$	3				
9.	Let <i>R</i> and <i>R'</i> be two rings and $\phi: R \to R'$ be an onto homomorphism. If <i>I</i> is an ideal of <i>R</i> , show that $\phi(I)$ is also an ideal of <i>R'</i> . Will this statement still be true if ϕ is any arbitrary homomorphism from <i>R</i> to <i>R'</i> ?	4+2				
10.	Let U and W be two subspaces of a finite dimensional vector space V. Show that $\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W)$.					
11.	Prove that a finite integral domain is a field.	6				
12.(a)	Let $R = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\},\$	3				
	$S = \{2a + 2b\sqrt{3} : a, b \in \mathbb{Z}\} \text{ and }$					
	$T = \{4a + 2b\sqrt{3} : a, b \in \mathbb{Z}\}$					
	Show that T is an ideal of S , but not an ideal of R .					
(b)	Find the units in the integral domain \mathbb{Z} [i].	3				

GROUP-C

	Answer any <i>two</i> questions from the following	$12 \times 2 = 24$
13.(a)	Prove that the ring $(\mathbb{Z}_n, +, \cdot)$ is an integral domain iff <i>n</i> is a prime.	4
(b)	Find dim $(U \cap V)$, where U and V are subspaces of \mathbb{R}^4 given by	4
	$U = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0 \},\$	
	$V = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 2x_1 + x_2 - x_3 + x_4 = 0 \}$	
(c)	Let R be a ring with unity and the left ideals of R are only the null ideal and R itself. Show that R is a skew field.	4
14.(a)	Extend the set $\{(1, 1, 1, 1), (1, -1, 1, -1)\}$ to a basis of \mathbb{R}^4 .	4
(b)	Give an example of a subring which is not an ideal.	2
(c)	The matrix of a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ relative to the ordered bases	6
	$\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 and $\{(1, 0), (1, 1)\}$ of \mathbb{R}^2 is $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$.	
	Find the matrix of <i>T</i> relative to the ordered bases $\{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ of \mathbb{R}^3 and $\{(1, 1), (0, 1)\}$ of \mathbb{R}^2 .	

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC9/2022

15.(a) Does there exist an epimorphism from the ring \mathbb{Z}_{24} onto the ring \mathbb{Z}_7 ?	3
(b) Let <i>I</i> be an ideal of a ring <i>R</i> . Prove that if \mathbb{R} is a commutative ring with unity, then so is R/I . If <i>R</i> has no divisor of zero, is the same necessarily true for R/I .	6
(c) Let α, β, γ be three vectors in a vector space V, so that $\alpha + \beta + \gamma = \theta$. Show that $L(\{\alpha, \beta\}) = L(\{\beta, \gamma\}) = L(\{\gamma, \alpha\})$	3
16.(a) Find a basis and determine the dimension of the set of all 2×2 real skew symmetric matrices.	4
(b) Show that the rings \mathbb{R} and \mathbb{C} are not isomorphic.	2
(c) Let <i>R</i> be the ring of all real valued continuous functions on [0,1]. A mapping $\phi: R \to \mathbb{R}$ is defined by $\phi(f) = f(\frac{1}{2}) \forall f \in R$. Show that ϕ is an onto homomorphism. Determine ker ϕ . Prove that $R/\ker \phi \simeq \mathbb{R}$.	6

___×_____