

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2022

CC9-PHYSICS

ELEMENTS OF MODERN PHYSICS

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1.	Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$
(a)	Calculate the energy of a Photon of wavelength 6000 Å.	1
(b)	What do you mean by ultraviolet catastrophe?	1
(c)	The uncertainty in the location of a particle is equal to its de-Broglie wavelength. Show that the uncertainty in its velocity is equal to its velocity.	1
(d)	How does the radius of a nucleus depend on the corresponding atomic number?	1
(e)	What kind of electrons are involved in photoelectric effect?	1
	(i) free (ii) bound (iii) both	
(f)	What is threshold energy of a nuclear reaction?	1
(g)	Why slow neutrons can interact with U^{235} , while the fast ones cannot?	1
(h)	Explain spontaneous and stimulated emission.	1

GROUP-B

		Answer any three questions from the following	$5 \times 3 = 15$
2.	(a)	Explain why we do not get Compton effect with visible radiation.	2
	(b)	Explain why the Scattered X-ray, having the same wavelength as the incident X-ray, can be observed at any Scattering angles, in case of Compton effect?	1
	(c)	Show that the de-Broglie wavelength (λ) associated with an electron in an	2
		accelerating potential V is equal to k/\sqrt{V} , where k is a constant.	
3.	(a)	State and explain Heisenberg's uncertainty relation.	2
	(b)	Using uncertainty relation, show that electron cannot be a constituent of atomic nucleus.	3
4.		The wave function of an one dimensional quantum mechanical system is given	1+2+2
		by $\psi(x) = A \sin \frac{\pi x}{L}$, for $0 \le x \le L$ and $\psi(x) = 0$ elsewhere.	
		Sketch the wave function. Find the constant A and determine the probability of finding the system in a region $0 \le x \le L/2$.	
5.	(a)	Sketch N - Z plot, where N is the nuclear number and Z is the atomic number. Briefly explain the nature of the plot.	2

UG	/CB	CS/B.Sc./Hons./4th Sem./Physics/PHYSCC9/2022	
	(b)	1 gm of Ra is reduced to 2.1 mg in 5 years by α -decay. Calculate the half life of Ra.	3
6.		What do you mean by Einstein's <i>A</i> , <i>B</i> coefficients? Show that their ratio is $A_{nm}/B_{nm} = 8\pi h v^3/c^3$, where the symbols have their usual significance.	2+3
		GROUP-C	
		Answer any <i>two</i> questions from the following	$10 \times 2 = 20$
7.	(a)	Write down Einstein's equation in photoelectric effect explaining the terms involved.	2
	(b)	 Explain the following in photoelectric effect: (i) dependence of photoelectric current on the intensity of incident radiation; (ii) dependence of stopping potential on the wavelength of incident radiation 	$2\frac{1}{2}+2\frac{1}{2}$
	(c)	Show that the kinetic energy T of an electron, having de-Broglie wavelength equal to Compton wavelength, is given by $T = m_0 c^2 (\sqrt{2} - 1)$ where m_0 is the rest mass of the electron and c is the velocity of light in vacuum.	3
8.	(a)	What do you mean by probability current density for a quantum mechanical system?	2
	(b)	Deduce the expression of probability current density of a particle moving in one dimension.	3
	(c)	Deduce the equation of continuity for a quantum mechanical dynamic system.	3
	(d)	A particle moving in one dimension is represented by $\psi(x) = \left(\frac{\sqrt{2}}{\hbar}\right)^2 \frac{x + ix}{x + ix^2}$.	2
		Show that the probability of finding the particle is maximum at $x = \pm 1$.	
9.	(a)	A beam of particles, each of mass <i>m</i> and energy <i>E</i> , moving through a region of zero potential energy, approaches a rectangular potential barrier of width ' <i>a</i> ' and height V_0 , where $V_0 > E$.	6
		If $\beta a >> 1$, where $\beta = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$, prove that the transmission coefficient is	
		given by $T = \frac{16E}{V_0} (1 - E/V_0) e^{-2\beta a}$.	
	(b)	When a U-235 nucleus undergoes fission, 200 MeV energy is released. How many fissions per second is needed for generating a power of 1 watt? How much energy in Joule will be released when 1 g of U-235 is fissioned?	4
10	.(a)	What are the basic similarity between a liquid drop and an atomic nucleus?	3
- 0	(b)	What is mass parabola? How can we predict the stability of an element in a isobaric family?	2+2
	(c)	In a radioactive decay process if λ_1 and λ_2 are the decay constant of parent and	3

.×