

UNIVERSITY OF NORTH BENGAL B.Sc. Honours Part-III Examination, 2022

PHYSICS

PAPER-VIII

Time Allotted: 4 Hours

Full Marks: 90

3

3

3

The figures in the margin indicate full marks. All symbols are of usual significance.

Answer question no. 1 and *five* from the rest, taking at least *one* but not more than *two* from each group

- 1. (a) KBr crystal has a cubic structure. If its density is 2.75×10^3 kg m⁻³ and molecular weight is 119.01 a.m.u., calculate the lattice constant.
 - (b) An alien spaceship is being followed by a rocket launched from the earth. The speed of the rocket as observed from the Earth is $2.5 \times 10^8 \text{ ms}^{-1}$ and that of the alien spaceship is $2 \times 10^8 \text{ ms}^{-1}$. What is the speed of the alien spaceship with respect to the rocket?
 - (c) In a medium of dielectric constant 5, the maximum displacement current is equal to the maximum conduction current at a frequency of 1 MHz. Find out the conductivity of the medium.
 - (d) Describe the state of polarization of the wave

$$\vec{E}(z,t) = \hat{i}E_0\cos(kz - \omega t) - \hat{j}E_0\sin(kz - \omega t)$$

(e) Estimate the diamagnetic susceptibility per mole of hydrogen. Assume $\langle r_0^2 \rangle = 3a_0^2$ 3 where the atomic radius $a_0 = 0.5$ Å.

GROUP-A

(PHYSICAL OPTICS II)

- 2. (a) Describe the phenomenon of double refraction in a uniaxial crystal. How is 2+2 double refraction explained by Huygen's theory?
 - (b) If n_0 is the refractive index for the O-ray, and n_e is the refractive index for the Eray, then show that the refractive index n_{θ} for the E-ray in the direction θ with the optical axis is given by,

$$\frac{1}{n_{\theta}^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}$$

- (c) How can you convert
 - (i) an elliptically polarised light into a circularly polarized light?
 - (ii) a circularly polarised light into an elliptically polarized light?
- (d) For calcite, $\mu_e = 1.486$ and $\mu_0 = 1.658$ for the sodium light. Calculate the 3 minimum thickness of a quarter wave plate made out of calcite.

4

B.Sc./Part-III/Hons./(1+1+1) System/PHSH-VIII/2022

3. (a) Explain the working principle of the optical fibre as a waveguide for light.	3
(b) Deduce the threshold condition for a Laser action.	4
(c) Explain the concept of temporal and spatial coherence. Discuss how the visibility of fringes depend on the degree of coherence.	3+2
(d) Calculate the numerical aperture and acceptance angle of an optical fibre for which μ_1 (core) = 1.55 and μ_2 (cladding) = 1.50	3
4. (a) What is optical activity? Discuss Fresnel's theory of optical activity and obtain an expression for the rotation.	1+5
(b) A 20 cm long tube containing 48 cc of sugar solution produces an optical rotation of 11°. If the specific rotation of sugar solution is 66°, determine the amount of sugar present in the solution contained in the tube.	3
(c) Discuss the four-level pumping scheme for a Laser action.	3
(d) State the basic principles of holography.	3

GROUP-B

(ELECTROMAGNETIC THEORY AND SPECIAL THEORY OF RELATIVITY)

5. (a) Derive the electromagnetic wave equations from Maxwell's field equations and show that the electric and magnetic fields are in phase in a homogeneous isotropic dielectric medium.	2+3
(b) What is the Poynting vector? Determine the Poynting vector at the surface of the Sun if the power radiated by the Sun is 3.8×10^{26} W while its radius is 7×10^{8} m.	2+2
(c) Explain the concept of displacement current.	2
(d) Using Maxwell's equations show that the velocity of propagation of electromagnetic waves in free space is $c = 1/\sqrt{\mu_0 \varepsilon_0}$	4
6. (a) Define the scattering cross-section. Assuming the formula for the time average power radiated per unit solid angle by an oscillating dipole, obtain an expression for the scattering cross-section for Rayleigh scattering.	1+4
(b) Show that the Brewster's law of polarisation is a direct consequence of the Fresnel's law of reflection.	3
(c) Verify whether $\vec{E} = \cos(y-t)\hat{k}$ and $\vec{B} = \cos(y-t)\hat{i}$ may constitute an electromagnetic wave.	3

(d) Show that

$$\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$$

remains invariant under Lorentz transformation.

- 7. (a) Show that, $\frac{\partial U}{\partial L} + \nabla \cdot \vec{S} = 0$, where $\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$ and U is the energy density. 4
 - (b) What do you mean by a proper length? Using Lorentz transformation equations 1+3 show that proper length is the highest length of an object.

4

B.Sc./Part-III/Hons./(1+1+1) System/PHSH-VIII/2022

(c) Show that a particle of zero rest mass, must travel with the speed of light.	$1\frac{1}{2}+1\frac{1}{2}$
Calculate the relativistic mass and momentum of a photon of energy 6.2×10^{-19} J.	<i>L L</i>

(d) Find out the speed of a 1 MeV electron both classically and relativistically. 2+2

GROUP-C

(SOLID STATE PHYSICS)

8. (a)	Define the 'packing fraction' for a lattice structure. Calculate the packing fraction and density of sodium chloride from the following data: Radius of sodium ion = 0.98 Å Radius of chlorine ion = 1.81 Å Atomic mass of sodium = 22.99 amu Atomic mass of chlorine = 35.45 amu	1+3
(b)	Derive an expression for the interplanar spacing of the (hkl) planes of a simple cubic structure.	3
(c)	The distance between the (100) planes (d_{100}) in a bcc structure is 0.232 nm. Determine the lattice constant.	2
(d)	All primitive cells are unit cells, but all unit cells may or may not be primitive cells. — Justify.	2
(e)	Prove that the reciprocal lattice vector is normal to a lattice plane of the crystal lattice.	4
9. (a)	What is the Hall-coefficient? Discuss how the Hall-coefficient is experimentally determined.	1+3
(b)	State Wiedemann-Franz's law. How can you prove it on the basis of Drude model of free electrons?	2+5
(c)	The Curie temperature of iron is 1043 K. If each Fe atom has a magnetic moment $\mu = 2\mu_B$ where μ_B is the Bohr magneton, calculate the following:	2+2
	(i) Saturation magnetization	
	(ii) Weiss field constant for iron.	
	Assume, that iron has a bcc structure with lattice constant $a = 0.286$ nm. Given that $\mu_B = 9.27 \times 10^{-24}$ Am ² .	
10.(a)	What do you mean by the effective mass of an electron?	2
(b)	What do you understand by a Fermi gas? Can a metal be associated with two Fermi temperatures?	2+1
(c)	What is the Fermi surface? Determine the Fermi temperature of lithium with an electron density $5 \times 10^{29} \text{ m}^{-3}$.	1+3
(d)	Distinguish between dia-, para-, ferro- and antiferro- magnetic materials on the basis of the variation of magnetic susceptibility with temperature.	4
(e)	What are ferrites? Discuss some of its uses.	1+1

3088

___X___