

'समानो समानी' **UNIVERSITY OF NORTH BENGAL** B.Sc. Honours 6th Semester Examination, 2022

CC13-MATHEMATICS

RING THEORY AND LINEAR ALGEBRA-II

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

 $3 \times 4 = 12$ Answer any *four* questions from the following

- 1. Find all the prime ideals in the ring \mathbb{Z}_8 .
- 2. Express the ideal $4\mathbb{Z} + 10\mathbb{Z}$ in the ring \mathbb{Z} as a principal ideal of \mathbb{Z} .
- 3. Show that 1-i is irreducible in $\mathbb{Z}[i]$.
- 4. Give an example of a matrix $A \in M_2(\mathbb{R})$ such that A has no eigenvalue.

Test for the diagonalizability of the matrix $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ in $M_2(\mathbb{R})$. 5.

If S_1 and S_2 are two subsets of a vector space V such that $S_1 \subseteq S_2$ then prove that 6. $S_2^0 \subseteq S_1^0$. Here S^0 denotes the annihilator of S.

GROUP-B

Answer any four questions from the following $6 \times 4 = 24$ 3 7. (a) Show that $I = \{(a, 0) : a \in \mathbb{Z}\}$ is a prime ideal but not a maximal ideal in the ring $\mathbb{Z} \times \mathbb{Z}$.

- (b) Prove that in an integral domain, every prime element is an irreducible element. Is 3 the converse true? Justify your answer.
- 8. (a) Show that 2+11i and 2-7i are relatively prime in the integral domain $\mathbb{Z}[i]$. 3 3
 - (b) Prove that K[x] is a Euclidean domain where K is a field.

9. (a) Let $\mathcal{B} = \{\beta_1, \beta_2, \beta_3\}$ be a basis for \mathbb{R}^3 , where $\beta_1 = (1, 0, -1), \beta_2 = (1, 1, 1)$ and 3 $\beta_3 = (2, 2, 0)$. Find the dual basis of \mathcal{B} . (b) Let W be the subspace of \mathbb{R}^5 which is spanned by the vectors $\alpha_1 = (2, -2, 3, 4, -1)$, 3 $\alpha_2 = (-1, 1, 2, 5, 2), \alpha_3 = (0, 0, -1, -2, 3)$ and $\alpha_4 = (1, -1, 2, 3, 0)$. Find W^0 . 10.(a) Let V be a vector space over a field F and $T: V \rightarrow V$ be a linear operator. Suppose 3 $\chi_T(t)$ and m(t) are the characteristic polynomial and minimal polynomial of T respectively. Then prove that m(t) divides $\chi_T(t)$. (b) Prove that for all α , β in a Euclidean space V, $\langle \alpha, \beta \rangle = 0$ 3 iff $\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$. 11.(a) Let V be an inner product space and T be a linear operator on V. Then prove that T 4 is an orthogonal projection iff T has an adjoint T^* and $T^2 = T = T^*$. (b) State Bessel's inequality regarding an orthogonal set of nonzero vectors in an 2 inner product space V. 12.(a) Apply Gram-Schmidt process to the given subset S of the inner product 4 space V to obtain an orthonormal basis \mathcal{B} for span (S), where $V = \mathbb{R}^3$ and $S = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}.$

(b) Let
$$A \in M_2(\mathbb{R})$$
, where $A = \begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}$. Show that A is diagonalizable. 2

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

- 13.(a) Let *R* be an integral domain. Suppose there exists a function δ: *R* \ {0} → N₀ such that for all *a*, *b* ∈ *R* \ {0}, δ(*ab*) ≥ δ(*b*), where equality holds iff *a* is a unit. Then prove that *R* is a factorization domain.
 - (b) If *p* be a nonzero non-unit element in a PID *D*, then prove that the following 6 statements are equivalent:
 - (i) p is a prime element in D.
 - (ii) p is an irreducible element in D.
 - (iii) $\langle p \rangle$ is a nonzero maximal ideal of *D*.
 - (iv) $\langle p \rangle$ is a nonzero prime ideal of D.
- 14.(a) Prove that the integral domains $\mathbb{Z}[i\sqrt{n}]$ for n = 6, 7, 10 are factorization domains 6 but not unique factorization domains.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC13/2022

- (b) Let V = M_n(ℝ) and B∈V be a fixed vector. If T is the linear operator on V defined by T(A) = AB BA and if f is the trace function, what is T^t(f)? Here T^t denotes the transpose of T.
- (c) Let \langle , \rangle be the standard inner product on \mathbb{R}^2 . Let $\alpha = (1, 2)$ and $\beta = (-1, 1)$. If γ 2 is a vector such that $\langle \alpha, \gamma \rangle = -1$ and $\langle \beta, \gamma \rangle = 3$, find γ .

4

5

5

4

- 15.(a) Let F be a field and f be the linear functional on F^2 , defined by $f(x_1, x_2) = ax_1 + bx_2$. Then find $T^t f$, where $T: F^2 \to F^2$ is a linear operator defined by $T(x_1, x_2) = (x_1 x_2, x_1 + x_2)$ for all $(x_1, x_2) \in F^2$.
 - (b) Find the minimal polynomial of the matrix $A \in M_3(\mathbb{R})$, where

$$A = \begin{pmatrix} 4 & -2 & 2 \\ 6 & -3 & 4 \\ 3 & -2 & 3 \end{pmatrix}$$

- (c) Let T_1 and T_2 be two linear operators on an inner product space *V*. Then prove that $(T_1 T_2)^* = T_2^* T_1^*$.
- 16.(a) Let V be an *n*-dimensional inner product space and W be a subspace of V. Then prove that $\dim(V) = \dim(W) + \dim(W^{\perp})$, where W^{\perp} denotes the orthogonal complement of W.
 - (b) Let *T* be a linear operator on a finite dimensional vector space *V* and let f(t) be the characteristic polynomial of *T*. Then prove that $f(T) = T_0$, where T_0 denotes the zero transformation.
 - (c) Let V be a finite dimensional vector space and W be a subspace of V. Then $\dim(W^0) = \dim V \dim W$.

_×___