

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2022

DSE-P3-MATHEMATICS

Time Allotted: 2 Hours Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains DSE3A and DSE3B. Candidates are required to answer any *one* from the *two* courses and they should mention it clearly on the Answer Book.

DSE3A

	DSE3A			
POINT SET TOPOLOGY				
GROUP-A				
	Answer any four questions from the following	$3 \times 4 = 12$		
1.	Give an example of a continuous bijective map between two spaces which is not a homeomorphism. Justify your answer.	3		
2.	If $F(\mathbb{N})$ denotes the collection of all finite subsets of \mathbb{N} then find cardinality of $F(\mathbb{N})$.	3		
3.	The co-countable topology on $\mathbb R$ is defined as the collection of all sets $U \subset \mathbb R$ so that $\mathbb R \setminus U$ is either countable or all of $\mathbb R$. Is $[0, 1]$ a compact subspace of $\mathbb R$ with co-countable topology.	3		
4.	Show that $\frac{\frac{0}{0}}{A} = \frac{0}{A}$ and $\frac{c}{A} = \overset{0}{A}$, where A^c means complement of A .	3		
5.	Let us consider \mathbb{R} with cofinite topology. Find closure of A and B where A is finite and B is infinite.	3		
6.	Examine if every constant function $f:(X,J_1)\to (Y,J_2)$ is continuous.	3		
GROUP-B				
	Answer any four questions from the following	$6 \times 4 = 24$		

	This wer any jour questions from the following	•	
7.	Prove that $2^a = c$, where $ \mathbb{N} = a$ and $ \mathbb{R} = c$.		6
8.	Let $f:(X,J_X)\to (Y,J_Y)$ be a mapping then prove that the following are		6

(i) f is continuous.

equivalent:

- (ii) $f(\overline{A}) \subset \overline{f(A)}, \forall A \subset X$
- (iii) for any closed set C in Y, $f^{-1}(C)$ is closed in X.
- 9. Show that \mathbb{R} with usual topology is not compact but \mathbb{R} with cofinite topology is compact.
- 10. Let *X* and *Y* be connected spaces. Show that $X \times Y$ is connected.
- 11. Show that $\{(r, s); r < s, r, s \in Q\}$ is a basis for usual topology on \mathbb{R} but 6 $\{[r, s); r < s, r, s \in Q\}$ is not a basis for \mathbb{R}_{ℓ} .
- 12.(a) Can we say that metric spaces are topological spaces? Explain.
 - (b) Show that projection maps are continuous open but not closed.

GROUP-C

Answer any two questions from the following

 $12 \times 2 = 24$

6

4

7

5

- 13.(a) Let X be a compact Hausdorff space and let (A_n) be a countable collection of closed sets in X. Show that if each set A_n has empty interior in X, then the union $\bigcup_{n \in \mathbb{N}} A_n$ also has empty interior in X.
 - (b) Prove that continuous image of a connected space is connected.

6

14.(a) Show that the function $f: \mathbb{R}_{\ell} \to \mathbb{R}$ defined by $f(x) = [x] \ \forall x \in \mathbb{R}$ is continuous.

6

(b) Show that \mathbb{R}^n and \mathbb{R}^m cannot be homeomorphism if $m \neq n$.

15.(a) By giving examples show that a + c = c, where $|\mathbb{N}| = a$ and $|\mathbb{R}| = c$.

5 5+2

(b) Show that closed subset of a compact space is compact but a compact subset of a topological space may not be closed.

3

16.(a) Show by an example that connectedness is necessary in the statement of intermediate value theorem.

4+5

(b) Let A be a subset of a topological space X and (x_n) be a sequence in A such that $x_n \to x$. Show that $x \in \overline{A}$. Also show that if X is a metric space then the converse is true.

DSE₃B

BOOLEAN ALGEBRA AND AUTOMATA THEORY

GROUP-A

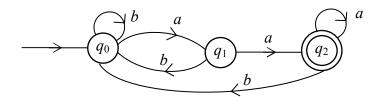
Answer any four questions from the following

 $3 \times 4 = 12$

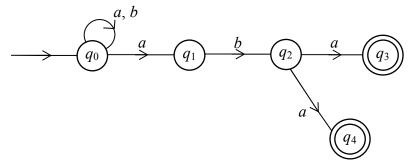
1. Give an example of a bijective mapping between two ordered sets which is not an order isomorphism.

6074

- 2. Show by an example that union of two sublattices of a lattice may not be a sublattice.
- 3. Reduce the Boolean term $((x_1 + x_2).(x_1' + x_3))'$ to DNF.
- 4. Identify the language L(M) accepted by the automaton M in the figure:



5. Let *M* be the NFA whose state diagram is given below:



Write down the transition table for this NFA. Also find L(M).

6. Let $\Sigma = \{0, 1\}$ and $T = \{\omega \in \Sigma^* : \omega \text{ contains even number of 1's} \}$. Show that T is an accepted language.

GROUP-B

Answer any four questions from the following

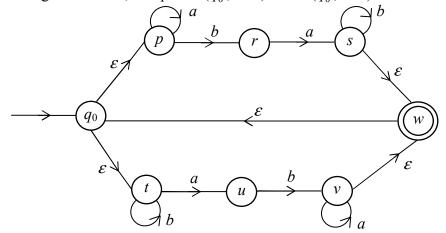
 $6 \times 4 = 24$

2

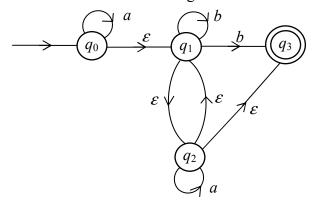
- 7. (a) Let L and K be two lattices and $f: L \to K$ be a map. Prove that f is a lattice isomorphism iff it is order isomorphism.
 - (b) Prove that every sublattice of a distributive lattice is also distributive.
- 8. (a) Let L be a Boolean lattice. Then prove that for all $a, b \in L$, $a \land b' = 0$ iff $a \le b$.
 - (b) Let X be any set. Define $FC(X) = \{A \subseteq X : A \text{ is finite OR } X \setminus A \text{ is finite}\}$. Prove that $(FC(X), \cup, \cap, ', \phi, X)$ is a Boolean Algebra.
- 9. Suppose a 4-variable Boolean term is given as follows: $\phi = \sum m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$

Minimize ϕ using Karnaugh map.

10.(a) For the given ε -NFA, compute $\hat{\delta}(q_0$, aba) and $\hat{\delta}(q_0$, bba).



(b) Find epsilon closures of all the states of the given ε -NFA.



- 11. For $\Sigma = \{a, b, c\}$, design a Turing machine that accepts $L = \{a^n b^n c^n \mid n \ge 1\}$.
- 12.(a) Show that the language of palindromes over $\Sigma = \{a, b\}$ is a context free language.
 - (b) Distinguish between NFA and ε -NFA.

GROUP-C

Answer any two questions from the following

 $12 \times 2 = 24$

- 13.(a) Prove that a language L is accepted by some DFA iff L is accepted by some NFA.
- 6

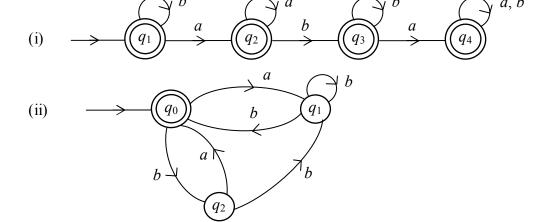
(b) Find regular expression for the following DFAs:

3+3

2

3

3



6074 4

14.(a) Draw the transition graph of the NPDA, $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$, where $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{a, b\}$, $\Gamma = \{a, b, z\}$, $F = \{q_2\}$ and δ is given by:

6

4

3+3

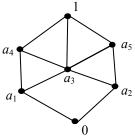
=
$$\{q_0, q_1, q_2\}$$
, $\Sigma = \{a, b\}$, $\Gamma = \{a, b, z\}$, $F = \{q_2\}$ and δ is given by:
 $\delta(q_0, a, z) = \{(q_1, a), (q_2, \lambda)\}$

$$\delta(q_1, b, a) = \{(q_1, b)\}$$

$$\delta(q_1, b, b) = \{(q_1, b)\}$$

$$\delta(q_1, a, b) = \{(q_2, \lambda)\}\$$

- (b) Let $\Sigma = \{a, b\}$ be an alphabet. Show that the language $L = \{a^n b^n : n \ge 1\}$ is not a regular language but it is a CFL.
- 15.(a) Prove that a lattice L is non-distributive iff $N_5 \rightarrow L$ OR $M_3 \rightarrow L$. Here $L_1 \rightarrow L_2$ means L_2 contains a sublattice isomorphic to L_1 .
 - (b) Consider the lattice *L* given below:



Which of the following are sublattices of L?

$$L_1 = \{0, a_1, a_2, 1\}, L_2 = \{0, a_1, a_5, 1\}$$

Justify your answer.

16.(a) Draw a switching circuit which realizes the following Boolean expressions:

(i)
$$x(yz + y'z') + x'(yz' + y'z)$$

(ii)
$$(x+y+z+u)(x+y+u)(x+z)$$

(b) For $n \in \mathbb{N}$, suppose D_n denotes the set of all positive divisors of n. Then prove that (D_n, \leq) is a Boolean lattice iff n is square free. Here, $a \leq b$ iff $a \mid b$. Here for $a \in D_n$, $a' = \frac{n}{a}$.

____×___

6074 5